//求小于n且与n互质的个数
int euler_phi(int n)
{
int m = (int)sqrt(n + 0.5);
int ans = n;
for(int i = 2; i <= m; i ++)
{
if(n % i == 0)
{
ans = ans / i * (i - 1);
while(n % i == 0) n/= i;
}
}
if(n > 1)ans = ans / n * (n - 1);
return ans;
}
//接口phi_table(int n)求从1到小于等于n的每个点i,小于i且与i互素的个数int const maxn = 1100000;int phi[maxn + 5];void phi_table(int n){ for(int i = 2; i <= n; i ++) phi[i] = 0; phi[1] = 0; for(int i = 2; i <= n; i ++) { if(!phi[i]) { for(int j = i; j <= n; j += i) { if(!phi[j]) {
phi[j] = j; } phi[j] = phi[j] / i * (i - 1); } } } for(int i = 1; i <= n; i ++) { phi[i] = max(phi[i - 1],phi[i]); }}
欧拉函数模板
最新推荐文章于 2024-11-07 23:24:07 发布