欧拉函数模板

//求小于n且与n互质的个数
int euler_phi(int n)
{
    int m = (int)sqrt(n + 0.5);
    int ans = n;
    for(int i = 2; i <= m; i ++)
    {
        if(n % i == 0)
        {
            ans = ans / i * (i - 1);
            while(n % i == 0) n/= i;
        }
    }
    if(n > 1)ans = ans / n * (n - 1);
    return ans;
}

//接口phi_table(int n)求从1到小于等于n的每个点i,小于i且与i互素的个数int const maxn = 1100000;int phi[maxn + 5];void phi_table(int n){ for(int i = 2; i <= n; i ++) phi[i] = 0; phi[1] = 0; for(int i = 2; i <= n; i ++) { if(!phi[i]) { for(int j = i; j <= n; j += i) { if(!phi[j]) { phi[j] = j; } phi[j] = phi[j] / i * (i - 1); } } } for(int i = 1; i <= n; i ++) { phi[i] = max(phi[i - 1],phi[i]); }}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值