分解质因数算法和欧拉函数

分解质因数的含义

每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,把一个合数用质因数相乘的形式表示出来,叫做分解质因数。如30=2×3×5 。分解质因数只针对合数。

算法描述

从2开始枚举能够整除的质数,直到 i ∗ i < = n i*i<=n ii<=n(注意 n n n一直在变)时,表示不能被素数整除了,这时变量 n n n保存的数字就是最后一个质因数。

时间复杂度为 O ( n ) O(\sqrt{n}) O(n )

#include <cstdio>
#include <cmath>
#include <iostream>
using namespace std;
const int N = 1e5 + 5;
typedef long long ll;
#define debug(x) cout << #x << " = " << x << endl

ll factor[N];

int resolve(ll n)//分解质因数
{
	int cnt = 0;
	for (ll i = 2; i * i <= n; i++)
		if (n % i == 0)
			for ( ; n % i == 0; n /= i)
				factor[cnt++] = i;
	if (n != 1)
		factor[cnt++] = n;
	return cnt;
}

int main(void)
{
	int n;
	cin >> n;
	int cnt = resolve(n);
	debug(cnt);
	for (int i = 0; i < cnt; i++)
		cout << factor[i] << endl;
	
	return 0;
}

欧拉函数

φ ( m ) = \varphi(m)= φ(m)=不超过 m m m并且和 m m m互素的数的个数

对于和 m m m互素的 x x x,有

x φ ( m ) ≡ 1   ( m o d   m ) x^{\varphi(m)}≡1~(mod~m) xφ(m)1 (mod m)

等价为 x ∗ x φ ( m ) − 1 ≡ 1   ( m o d   m ) x*x^{\varphi(m)-1}≡1~(mod~m) xxφ(m)11 (mod m)

根据逆元的定义式,可得

x − 1 ≡ x φ ( m ) − 1   ( m o d   m ) x^{-1}≡x^{\varphi(m)-1}~(mod~m) x1xφ(m)1 (mod m)

求解 φ ( n ) \varphi(n) φ(n)的时间复杂度为 O ( n ) O(\sqrt n) O(n ),求出 φ ( n ) \varphi(n) φ(n)后可以利用快速幂来求出逆元

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

typedef long long ll;

ll euler_phi(ll n)
{
	ll res = n;
	for (ll i = 2; i * i <= n; i++){
		if (n % i == 0){
			res = res / i * (i - 1);
			for ( ; n % i == 0; n /= i);
		}
	}	
	if (n != 1)
		res = res / n * (n - 1);
	
	return res;
}

int main(void)
{
	int n;
	cin >> n; 
	int ans = euler_phi(n);
	cout << ans << endl;
	
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值