Tower of Hanoi,也称为汉诺塔,是一个经典的递归问题。问题的背景是有三根柱子,其中一根上有从小到大依次摆放的n个圆盘。现在需要将这些圆盘从一根柱子上移动到另一根柱子上,同时满足以下条件:
- 每次只能移动一个圆盘;
- 大圆盘不能放在小圆盘上面。
Tower of Hanoi算法的基本思想是将n个圆盘看成两个部分,第一个部分是最底下的一个圆盘,第二部分是上面的n-1个圆盘。然后按照以下步骤进行:
- 将第二部分的n-1个圆盘从起始柱子移动到辅助柱子;
- 将第一个部分的一个圆盘从起始柱子移动到目标柱子;
- 将第二部分的n-1个圆盘从辅助柱子移动到目标柱子。
这样,就完成了将n个圆盘从起始柱子移动到目标柱子的任务。
优点:
- Tower of Hanoi是一个经典的递归问题,递归算法能够清晰地展示问题的解决步骤,使问题更容易理解;
- 算法的时间复杂度为O(2^n),在圆盘数量较小的情况下,运行时间可以接受。
缺点:
- 对于大规模的圆盘数量,算法的时间复杂度增长非常快,执行时间可能很长;
- 递归算法的实现可能导致堆栈溢出的问题。
以下是用C语言实现Tower of Hanoi算