问题
汉诺塔:汉诺塔(Tower of Hanoi)源于印度传说中,大梵天创造世界时造了三根金钢石柱子,其中一根柱子自底向上叠着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。 --引用维基百科
解析
对汉诺塔问题进行解释和建立模型
这是示意图,a是起始柱,c是目标柱,b起到中转作用在进行转移操作时,都必须确保大盘在小盘下面,且每次只能移动一个圆盘,最终c柱上有所有的盘子且也是从上到下按从小到大的顺序。
关键:
对于这个汉诺塔问题,在写递归时,我们只需要确定两个条件:
-
1.递归何时结束?
-
2.递归的核心公式是什么?即:
怎样将n个盘子全部移动到C柱上?
即:若使n个盘子全部移动到C柱上,上一步应该做什么?
- 当只有一个盘子,将它从a移动到c上
- 把a上面n-1的盘子看做整体,借助c移动到b上
把a的最后一个盘子移到c上
把b上n-1个盘子借助a移动到c上
代码
#include <iostream>
using namespace std;
int sum=0; //记录操作步骤次数
//将最左盘移动到最右盘
void move(char left, char right)
{
cout << left << "-->" << right << endl;
}
//n个盘子,将lef的盘子借助mi盘,移动到righ盘
void hanoi(int n, char lef, char mi, char righ)
{
++sum;
if (n == 1)
{
cout << lef << "-->" << righ << endl;
}
else
{
hanoi(n - 1, lef, righ, mi);
move(lef, righ);
hanoi(n - 1, mi, lef, righ);
}
}
int main()
{
int n;
cout << "Input n = ";
cin >> n;
cout << "The steps to move " << n << " desks:" << endl;
hanoi(3, 'A', 'B', 'C');
cout << "The sum of the steps is " << sum << endl;
return 0;
}
参考结果
本部分代码已上传github:https://github.com/ShuaiWang-Code/c-/tree/master/Hanoi