C/C++ semi implicit euler半隐式向后欧拉算法详解及源码

semi implicit euler半隐式向后欧拉算法是一种常用的数值积分方法,用于求解常微分方程。它是向后欧拉方法的改进版本。

semi implicit euler半隐式向后欧拉算法的步骤如下:

  1. 给定初值y0和时间步长h。
  2. 使用显式欧拉方法计算y(n),即y(n) = y0 + hf(t(n), y(n))。这一步是和向后欧拉方法相同的。
  3. 使用y(n)代替y(n+1)的近似值,得到如下迭代公式:y(n+1) = y0 + hf(t(n+1), y(n))。这一步是和向后欧拉方法不同的。其中t(n+1) = t(n) + h。

semi implicit euler半隐式向后欧拉算法相对于向后欧拉方法的优点是稳定性更好。由于采用了迭代公式,算法可以较好地处理刚性方程和较大的时间步长。

然而,semi implicit euler半隐式向后欧拉算法也有一些缺点。首先,算法的收敛速度比较慢,需要较小的时间步长才能得到准确的结果。其次,算法的实现比较复杂,需要进行迭代计算,增加了计算的复杂度。

以下是使用C语言实现semi implicit euler半隐式向后欧拉算法的一个简单示例:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猿来如此yyy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值