Python 最大类间方差法OTSU算法详解及源码

最大类间方差法(OTSU算法)是一种基于图像灰度级直方图的自适应阈值分割算法。该算法将图像分成两个类(前景和背景),通过寻找使得类间方差最大的灰度级作为分割阈值。

算法步骤如下:

  1. 统计图像的灰度级直方图,并计算总的像素数。
  2. 遍历灰度级,计算每个灰度级分割后的类间方差,即前景和背景之间的方差。
  3. 对于每个灰度级,计算分割后的前景和背景的像素数及对应的概率。
  4. 对于每个灰度级,计算分割后的前景和背景的均值。
  5. 对于每个灰度级,计算分割后的类间方差。
  6. 找到使得类间方差最大的灰度级,作为分割阈值。

最大类间方差法OTSU算法的优点包括:

  1. 简单快速:算法基于直方图统计,计算量较小。
  2. 自适应:算法能够根据图像的特点自适应地选择最优的分割阈值。
  3. 无参数:算法无需设置参数,适用于多种类型的图像。

最大类间方差法OTSU算法的缺点包括:

  1. 对于低对比度图像效果可能不佳:算法主要基于灰度级直方图,对于低对比度的图像,类间方差不明显,分割效果可能不佳。
  2. 对于复杂背景的图像效果可能不佳:算法假设图像可以分成两个类(前景和背景),对于复杂背景的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猿来如此yyy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值