最大类间方差法(OTSU算法)是一种基于图像灰度级直方图的自适应阈值分割算法。该算法将图像分成两个类(前景和背景),通过寻找使得类间方差最大的灰度级作为分割阈值。
算法步骤如下:
- 统计图像的灰度级直方图,并计算总的像素数。
- 遍历灰度级,计算每个灰度级分割后的类间方差,即前景和背景之间的方差。
- 对于每个灰度级,计算分割后的前景和背景的像素数及对应的概率。
- 对于每个灰度级,计算分割后的前景和背景的均值。
- 对于每个灰度级,计算分割后的类间方差。
- 找到使得类间方差最大的灰度级,作为分割阈值。
最大类间方差法OTSU算法的优点包括:
- 简单快速:算法基于直方图统计,计算量较小。
- 自适应:算法能够根据图像的特点自适应地选择最优的分割阈值。
- 无参数:算法无需设置参数,适用于多种类型的图像。
最大类间方差法OTSU算法的缺点包括:
- 对于低对比度图像效果可能不佳:算法主要基于灰度级直方图,对于低对比度的图像,类间方差不明显,分割效果可能不佳。
- 对于复杂背景的图像效果可能不佳:算法假设图像可以分成两个类(前景和背景),对于复杂背景的