分层聚类算法(Hierarchical clustering)是一种将数据点分层次地划分为不同的聚类的方法。它可以分为两种类型:自上而下的聚类(AGNES)和自下而上的聚类(DIANA)。
自上而下聚类(AGNES):该方法从所有数据点作为一个大的簇开始,然后不断将簇分解为更小的子簇,直到满足停止准则为止。常用的停止准则包括设置特定的层数或者设定特定的相似度阈值。该方法的优点是能够快速处理大规模数据集,缺点是分配过程不可逆,且对噪声和异常值比较敏感。
自下而上聚类(DIANA):该方法从每个数据点作为一个独立的簇开始,然后将相似度最高的簇合并为一个新的簇,直到满足停止准则为止。常用的停止准则包括设定特定的簇数目或者设定特定的相似度阈值。该方法的优点是可以处理不同大小的簇,且不敏感于噪声和异常值,缺点是在处理大规模数据集时速度较慢。
分层聚类算法的优点:
- 可以直观地将聚类结果表示为层次结构,便于结果解释和可视化。
- 不需要事先指定聚类个数,可以自动找到最优的聚类数目。
- 可以使用不同的相似度度量方法和合并策略进行灵活的定制。
分层聚类算法的缺点:
- 对于大规模数据集,算法的时间复杂度较高。
- 分配过程不可逆,无法回退。
- 对噪声和异常值比较敏感。
使用Python语言实现分层聚类算法时,可以使用scikit-learn库中的AgglomerativeClustering类来实现。以下是使用该类实现分层聚类算法的示例代码:
订阅专栏 解锁全文
965

被折叠的 条评论
为什么被折叠?



