Python 分层聚类算法详解及源码

分层聚类算法(Hierarchical clustering)是一种将数据点分层次地划分为不同的聚类的方法。它可以分为两种类型:自上而下的聚类(AGNES)和自下而上的聚类(DIANA)。

自上而下聚类(AGNES):该方法从所有数据点作为一个大的簇开始,然后不断将簇分解为更小的子簇,直到满足停止准则为止。常用的停止准则包括设置特定的层数或者设定特定的相似度阈值。该方法的优点是能够快速处理大规模数据集,缺点是分配过程不可逆,且对噪声和异常值比较敏感。

自下而上聚类(DIANA):该方法从每个数据点作为一个独立的簇开始,然后将相似度最高的簇合并为一个新的簇,直到满足停止准则为止。常用的停止准则包括设定特定的簇数目或者设定特定的相似度阈值。该方法的优点是可以处理不同大小的簇,且不敏感于噪声和异常值,缺点是在处理大规模数据集时速度较慢。

分层聚类算法的优点:

  1. 可以直观地将聚类结果表示为层次结构,便于结果解释和可视化。
  2. 不需要事先指定聚类个数,可以自动找到最优的聚类数目。
  3. 可以使用不同的相似度度量方法和合并策略进行灵活的定制。

分层聚类算法的缺点:

  1. 对于大规模数据集,算法的时间复杂度较高。
  2. 分配过程不可逆,无法回退。
  3. 对噪声和异常值比较敏感。

使用Python语言实现分层聚类算法时,可以使用scikit-learn库中的AgglomerativeClustering类来实现。以下是使用该类实现分层聚类算法的示例代码:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猿来如此yyy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值