Trapezoidal rule(梯形法则)是求解定积分的一种数值计算方法。它的思想是将被积函数曲线上的区间划分为多个梯形,然后计算这些梯形的面积之和,从而近似计算出积分值。
具体实现步骤如下:
- 将被积函数曲线上的区间[a, b]等分为n个小区间,每个小区间的宽度为h = (b - a) / n。
- 计算每个小区间的左右端点的函数值,设左端点的函数值为f(x_i)和右端点的函数值为f(x_i+1)。
- 将每个小区间分别看作一个梯形,计算每个梯形的面积,即(S_i = (f(x_i) + f(x_i+1)) * h / 2)。
- 将所有梯形的面积之和作为积分的近似值,即(integral ≈ (h / 2) * (f(x_0) + 2 * f(x_1) + 2 * f(x_2) + … + 2 * f(x_n-1) + f(x_n)))。
Trapezoidal rule的优点:
- 简单易懂,易于实现。
- 对于简单的函数,可以获得较高的精度。
Trapezoidal rule的缺点:
- 依赖离散化,当区间划分不够细时,精度较低。
- 对于复杂的函数,计算误差较大。
以下是使用Python语言实现Trapezoidal r