opencv——kmeans

opencv中的kmeans是基于颜色信息来分类的。

void asgdjh(Mat &src)
{	
	Scalar colorTab[] = {
		Scalar(0, 0, 255),
		Scalar(0, 255, 0),
		Scalar(255, 0, 0),
		Scalar(0, 255, 255),
		Scalar(255, 0, 255)
	};

	int width = src.cols;
	int height = src.rows;
	int dims = src.channels();

	// 初始化定义
	int sampleCount = width * height;
	int clusterCount = 3;
	Mat points(sampleCount, dims, CV_32F, Scalar(10));
	Mat labels;
	Mat centers(clusterCount, 1, points.type());

	// RGB 数据类型转化到样本数据
	int index = 0;
	for (int row = 0; row < height; row++)
	{
		for (int col = 0; col < width; col++)
		{
			// 多维转一维
			index = row * width + col;
			Vec3b bgr = src.at<Vec3b>(row, col);
			points.at<float>(index, 0) = static_cast<int>(bgr[0]);
			points.at<float>(index, 1) = static_cast<int>(bgr[1]);
			points.at<float>(index, 2) = static_cast<int>(bgr[2]);
		}
	}

	// KMeans
	TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1);
	kmeans(points, clusterCount, labels, criteria, 3, KMEANS_PP_CENTERS, centers);

	// 显示图像分割后的结果,一维转多维
	Mat result = Mat::zeros(src.size(), src.type());
	for (int row = 0; row < height; row++)
	{
		for (int col = 0; col < width; col++)
		{
			index = row * width + col;
			int label = labels.at<int>(index, 0);
			if (label == 5)
			{
				result.at<Vec3b>(row, col)[0] = 255;
				result.at<Vec3b>(row, col)[1] = 255;
				result.at<Vec3b>(row, col)[2] = 255;
			}
			
			result.at<Vec3b>(row, col)[0] = colorTab[label][0];
			result.at<Vec3b>(row, col)[1] = colorTab[label][1];
			result.at<Vec3b>(row, col)[2] = colorTab[label][2];
		}
	}

	// 中心点显示
	for (int i = 0; i < centers.rows; i++)
	{
		int x = centers.at<float>(i, 0);
		int y = centers.at<float>(i, 1);
		circle(result, Point(x, y), 10, Scalar(255, 255, 255), 1, LINE_AA);
	}
}

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值