题目描述
从 1~n 这 n 个整数中随机选取任意多个,输出所有可能的选择方案。
输入格式
输入一个整数n。
输出格式
每行输出一种方案。
同一行内的数必须升序排列,相邻两个数用恰好1个空格隔开。
对于没有选任何数的方案,输出空行。
本题有自定义校验器(SPJ),各行(不同方案)之间的顺序任意。
数据范围
1≤n≤15
输入样例:
3
输出样例:
3
2
2 3
1
1 3
1 2
1 2 3
注意点,这里要求输出的必须升序排列。
思路一,在dfs的形参里加入一个向量保存中间状态。注意这里dfs末尾的回溯语句可有可无,因为在末尾进入递归之前局部变量的值已经保存在栈里面了,我们在末尾改变的局部变量的值已经出栈废弃了,所以加不加回溯并没有影响。
#include <iostream>
#include <vector>
using namespace std;
int n;
void dfs(int d,vector<int> t){
if(d == n){
for(int i = 0;i < t.size();i++){
cout<<t[i]+1<<" ";
}
cout<<endl;
return;
}
dfs(d+1,t);
t.push_back(d);
dfs(d+1,t);
//t.pop_back();
}
int main(){
cin>>n;
vector<int> t;
dfs(0,t);
return 0;
}
这里虽然不用手动回溯,但是vector作为局部变量,会在递归的每一层保留有副本,极大的浪费了内存空间,所以一般将vector定义为全局的向量,要加上回溯操作。
#include <iostream>
#include <vector>
using namespace std;
int n;
vector<int> t;
void dfs(int d){
if(d == n){
for(int i = 0;i < t.size();i++){
cout<<t[i]+1<<" ";
}
cout<<endl;
return;
}
dfs(d+1);
t.push_back(d);
dfs(d+1);
t.pop_back();
}
int main(){
cin>>n;
dfs(0);
return 0;
}
思路二,状态压缩。(yxc大神的操作)
dfs(cur + 1,st);//不选择该数
dfs(cur + 1,st | 1 << cur);//选择该数,将st的第cur位置一。
#include <iostream>
using namespace std;
int n;
void dfs(int cur,int st){
if(cur == n){
for(int i = 0;i < n;i++){
if(st >> i & 1) cout<<i+1<<" ";
}
cout<<endl;
return;
}
dfs(cur + 1,st);
dfs(cur + 1,st | 1 << cur);
}
int main(){
cin>>n;
dfs(0,0);
return 0;
}