【ACWing】92. 递归实现指数型枚举

这篇博客详细介绍了如何使用深度优先搜索(DFS)结合状态压缩技术,解决从1到n的整数中随机选取子集的问题。通过一个整数的二进制位表示是否选中对应的数,展示了高效的O(n^2)时间复杂度和O(1)空间复杂度的解决方案。
摘要由CSDN通过智能技术生成

题目地址:

https://www.acwing.com/problem/content/94/

1 ∼ n 1∼n 1n n n n个整数中随机选取任意多个,输出所有可能的选择方案。

输入格式:
输入一个整数 n n n

输出格式:
每行输出一种方案。同一行内的数必须升序排列,相邻两个数用恰好 1 1 1个空格隔开。对于没有选任何数的方案,输出空行。本题有自定义校验器(SPJ),各行(不同方案)之间的顺序任意。

数据范围:
1 ≤ n ≤ 15 1≤n≤15 1n15

可以DFS + 状态压缩。用一个整数的右起第 k k k个二进制位表示数 k + 1 k+1 k+1有没有取过( k k k 0 0 0开始),从空集开始,尝试构造出所有子集,每层循环枚举当前加哪个数进集合,每个DFS树的节点都代表一个方案。代码如下:

#include <iostream>
using namespace std;

int state, n;

void dfs(int u) {
    for (int i = 0; i < n; i++) 
        if (state >> i & 1)
            printf("%d ", i + 1);
    puts("");

    for (int i = u; i < n; i++) {
        state += 1 << i;
        dfs(i + 1);
        state -= 1 << i;
    }
}

int main() {
    cin >> n;
    dfs(0);

    return 0;
}

时间复杂度 O ( n 2 n ) O(n2^n) O(n2n),空间 O ( 1 ) O(1) O(1)

7-3 h094是一道经典的排列枚举问题,通过递归实现。在这个问题中,我们需要找出给定长度为n的序列中,所有可能的排列方式。 递归实现排列枚举的基本思路是:从左到右依次确定每个位置上的元素。具体步骤如下: 1. 定义一个数组或字符串来存储当前已经确定的排列。 2. 定义一个布尔数组或集合来标记哪些元素已经被使用过。 3. 编写递归函数,函数参数包括当前已确定的位置、当前已确定的排列、标记数组等。 4. 在递归函数中,首先判断是否已经确定了所有位置,如果是,则输出当前排列。 5. 如果还有位置未确定,则遍历所有未被使用过的元素,依次将其放置到当前位置上,并更新标记数组。 6. 递归调用函数,继续确定下一个位置上的元素。 7. 在递归函数返回后,需要恢复标记数组的状态,以便进行下一次尝试。 下面是一个示例代码,演示了如何使用递归实现7-3 h094的排列枚举: ```cpp #include <iostream> #include <vector> using namespace std; void permutation(int pos, vector<int>& nums, vector<bool>& used, vector<int>& cur) { int n = nums.size(); if (pos == n) { // 输出当前排列 for (int i = 0; i < n; i++) { cout << cur[i] << " "; } cout << endl; return; } for (int i = 0; i < n; i++) { if (!used[i]) { cur[pos] = nums[i]; used[i] = true; permutation(pos + 1, nums, used, cur); used[i] = false; } } } int main() { int n; cout << "请输入序列的长度n:"; cin >> n; vector<int> nums(n); for (int i = 0; i < n; i++) { nums[i] = i + 1; } vector<bool> used(n, false); vector<int> cur(n); permutation(0, nums, used, cur); return 0; } ``` 希望以上解答能够帮助到你!如果有任何疑问,请随时提出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值