<think>我们正在设计一个多任务模型架构图,该模型包含1D CNN、Transformer Encoder、全连接层,以及分类和回归输出头。我们将分步构建这个模型。
步骤1:输入数据
假设输入数据是一维时序信号,形状为`(batch_size, sequence_length, input_features)`。
步骤2:1D CNN层
使用1D CNN进行局部特征提取。可以包含多个卷积层和池化层。输出形状为`(batch_size, new_sequence_length, num_filters)`。
步骤3:Transformer Encoder
将CNN的输出作为Transformer Encoder的输入。Transformer Encoder由多个相同的层组成,每层包含多头自注意力机制和前馈神经网络。
注意:Transformer Encoder要求输入是三维张量`(batch_size, sequence_length, features)`,这正是CNN的输出形状。
输出形状仍为`(batch_size, new_sequence_length, d_model)`,其中`d_model`是Transformer的隐藏层维度。
步骤4:全局平均池化(可选)
为了减少序列长度的影响并提取全局特征,可以在Transformer之后添加全局平均池化层(Global Average Pooling),将每个特征维度上的序列平均,输出形状变为`(batch_size, d_model)`。
或者,我们也可以使用Transformer Encoder输出的第一个位置([CLS] token)的输出作为全局表示,但这里我们并没有添加额外的[CLS] token,因此使用全局平均池化更直接。
步骤5:全连接层
将池化后的特征通过一个或多个全连接层,得到高层次的表示。输出形状为`(batch_size, hidden_units)`。
步骤6:多任务输出头
分类头:一个全连接层(通常带有softmax激活函数)用于分类任务,输出形状为`(batch_size, num_classes)`。
回归头:一个全连接层(通常不带激活函数或使用线性激活)用于回归任务,输出形状为`(batch_size, regression_targets)`。
现在,我们可以绘制一个结构图(使用文字描述):
输入 (1D序列)
|
1D CNN (卷积和池化)
|
Transformer Encoder (多个编码器层)
|
全局平均池化 (在序列维度上)
|
全连接层 (一个或多个)
|
分支为两个头:
| |
|--- 分类头 (全连接+softmax) 输出分类结果
|--- 回归头 (全连接) 输出回归值
注意:在代码实现中,我们可以使用PyTorch或TensorFlow/Keras来构建这个模型。
下面是一个简单的PyTorch代码示例:
```python
import torch
import torch.nn as nn
from torch.nn import TransformerEncoder, TransformerEncoderLayer
class MultiTaskModel(nn.Module):
def __init__(self, input_features, num_filters, d_model, nhead, num_layers, hidden_units, num_classes, regression_targets):
super().__init__()
# 1D CNN
self.cnn = nn.Sequential(
nn.Conv1d(input_features, num_filters, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool1d(kernel_size=2, stride=2),
# 可以添加更多层
)
# 假设经过CNN后序列长度变为原来的1/2(因为stride=2的池化)
# Transformer Encoder
self.transformer_encoder_layer = TransformerEncoderLayer(d_model=d_model, nhead=nhead)
self.transformer_encoder = TransformerEncoder(self.transformer_encoder_layer, num_layers=num_layers)
# 全局平均池化
self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
# 全连接层
self.fc = nn.Sequential(
nn.Linear(d_model, hidden_units),
nn.ReLU(),
)
# 分类头
self.classifier = nn.Linear(hidden_units, num_classes)
# 回归头
self.regressor = nn.Linear(hidden_units, regression_targets)
def forward(self, x):
# 输入x: (batch_size, sequence_length, input_features)
# 1D CNN要求输入为(batch_size, input_features, sequence_length)
x = x.permute(0, 2, 1)
x = self.cnn(x) # 输出: (batch_size, num_filters, new_seq_len)
# 为了输入Transformer,需要将维度调整为(batch_size, new_seq_len, num_filters)
x = x.permute(0, 2, 1) # 现在形状为(batch_size, new_seq_len, num_filters)
# 注意:Transformer期望输入形状为(seq_len, batch_size, d_model)
x = x.permute(1, 0, 2) # 调整为(seq_len, batch_size, num_filters)
# 通过Transformer Encoder
x = self.transformer_encoder(x) # 输出: (seq_len, batch_size, d_model)
# 调整回(batch_size, seq_len, d_model)
x = x.permute(1, 0, 2) # (batch_size, seq_len, d_model)
# 全局平均池化:在序列维度上取平均
# 先调整维度:将d_model作为通道维度,序列长度作为长度维度
x = x.permute(0, 2, 1) # (batch_size, d_model, seq_len)
x = self.global_avg_pool(x) # 输出: (batch_size, d_model, 1)
x = x.squeeze(-1) # (batch_size, d_model)
# 全连接层
x = self.fc(x) # (batch_size, hidden_units)
# 多任务输出
class_output = self.classifier(x) # (batch_size, num_classes)
reg_output = self.regressor(x) # (batch_size, regression_targets)
return class_output, reg_output
```
注意:上述代码中,我们假设CNN的输出通道数(num_filters)等于Transformer的d_model。如果不是,则需要一个线性变换来调整维度。
另外,Transformer的输入要求是(seq_len, batch_size, d_model),所以我们进行了维度置换。
结构图(文字描述):
```
Input (batch_size, seq_len, input_features)
|
v
1D CNN [Conv1d(input_features->num_filters, kernel=3, padding=1) -> ReLU -> MaxPool1d(kernel=2, stride=2)]
| Output: (batch_size, num_filters, new_seq_len) [new_seq_len = (seq_len+2*padding - (kernel_size-1)-1)//stride + 1? 实际上,我们使用padding=1,所以卷积后长度不变,然后池化步长为2,所以长度减半]
|
v
Permute: (batch_size, new_seq_len, num_filters)
|
v
Permute: (new_seq_len, batch_size, num_filters) -> 输入Transformer Encoder
|
v
Transformer Encoder (num_layers层) -> 输出: (new_seq_len, batch_size, d_model) [注意:这里我们假设num_filters=d_model]
|
v
Permute: (batch_size, new_seq_len, d_model)
|
v
Permute: (batch_size, d_model, new_seq_len) -> 全局平均池化 (AdaptiveAvgPool1d(1)) -> (batch_size, d_model, 1) -> squeeze(-1) -> (batch_size, d_model)
|
v
全连接层 [Linear(d_model, hidden_units) -> ReLU] -> (batch_size, hidden_units)
|
|----------------------------
| |
v v
分类头 [Linear(hidden_units, num_classes)] 回归头 [Linear(hidden_units, regression_targets)]
| |
v v
分类输出 (batch_size, num_classes) 回归输出 (batch_size, regression_targets)
```
注意:在实际使用中,可能需要根据具体任务调整超参数(如卷积层数、Transformer层数等)和结构(如添加残差连接、LayerNorm等)。
生成相关问题:
1. 如何调整模型以适应不同长度的输入序列?
2. 在多任务学习中,如何处理分类和回归任务的损失平衡?
3. 为什么在CNN之后使用Transformer?有什么优势?
4. 这个模型在哪些实际应用中可以发挥作用?</think>### 多任务模型架构图(1D CNN + Transformer Encoder + FC + 多输出头)
以下是您要求的模型架构示意图(文字描述版):
```
输入层 (1D序列数据)
│ (shape: [batch_size, seq_len, channels])
▼
1D CNN 特征提取层
│ ├─ Conv1D + 激活函数(ReLU)
│ ├─ 批归一化(BatchNorm)
│ └─ 池化层(MaxPool/AvgPool)
▼ (输出: [batch_size, new_seq_len, filters])
位置编码层
│ (添加可学习的位置嵌入)
▼
Transformer Encoder 层
│ ├─ 多头自注意力机制(Multi-Head Attention)
│ ├─ 残差连接 + 层归一化
│ ├─ 前馈网络(FFN)
│ └─ 重复N个编码器层
▼ (输出: [batch_size, new_seq_len, d_model])
全局特征聚合层
│ ├─ 全局平均池化(Global Average Pooling)
│ └─ 或 [CLS] 令牌聚合
▼ (输出: [batch_size, d_model])
全连接层(FC)
│ ├─ 多层感知机(MLP)
│ └─ Dropout正则化
▼ (输出: [batch_size, hidden_units])
┌───────────────┴───────────────┐
▼ ▼
分类头 回归头
├─ Dense(num_classes) ├─ Dense(regression_targets)
└─ Softmax激活 └─ 线性激活
```
### 关键组件说明:
1. **1D CNN层**
- 使用卷积核在时序维度滑动提取局部特征
- 公式:$y_t = \sum_{k=0}^{K-1} w_k \cdot x_{t+k} + b$
- 输出维度变化:$[B,L,C] \rightarrow [B,L',F]$
2. **Transformer Encoder**
- 多头注意力机制:
$$
\text{Attention}(Q,K,V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V
$$
- 每个编码器层包含:
- 自注意力子层
- 前馈网络子层($\text{FFN}(x) = \max(0, xW_1 + b_1)W_2 + b_2$)
- 残差连接和层归一化[^3]
3. **多任务输出头**
- **分类头**:全连接层 + Softmax,输出概率分布
- **回归头**:全连接层(无激活函数),输出连续值
- 共享特征提取主干,独立输出层
### PyTorch实现框架
```python
import torch
import torch.nn as nn
from torch.nn import TransformerEncoder, TransformerEncoderLayer
class MultiTaskModel(nn.Module):
def __init__(self, input_dim, seq_len, num_classes, regression_targets):
super().__init__()
# 1D CNN
self.cnn = nn.Sequential(
nn.Conv1d(input_dim, 64, kernel_size=5, padding=2),
nn.ReLU(),
nn.MaxPool1d(2),
nn.Conv1d(64, 128, kernel_size=3, padding=1),
nn.ReLU()
)
# Transformer
self.pos_encoder = nn.Embedding(seq_len//2, 128) # 序列长度减半
encoder_layers = TransformerEncoderLayer(d_model=128, nhead=8)
self.transformer = TransformerEncoder(encoder_layers, num_layers=3)
# 全连接层
self.fc = nn.Sequential(
nn.Linear(128, 256),
nn.ReLU(),
nn.Dropout(0.5)
)
# 多任务头
self.classifier = nn.Linear(256, num_classes)
self.regressor = nn.Linear(256, regression_targets)
def forward(self, x):
# CNN处理 (B, C, L) -> (B, F, L')
x = self.cnn(x.permute(0,2,1))
# 位置编码
positions = torch.arange(x.shape[2]).to(x.device)
x = x + self.pos_encoder(positions)[None,:,:].permute(0,2,1)
# Transformer (L', B, F)
x = self.transformer(x.permute(2,0,1))
# 全局平均池化
x = x.mean(dim=0) # (B, F)
# 全连接层
features = self.fc(x)
# 多任务输出
return self.classifier(features), self.regressor(features)
```
### 设计要点
1. **特征融合策略**
CNN提取局部特征 → Transformer捕获长距离依赖 → 全局池化聚合时序信息
2. **多任务平衡**
- 建议使用加权损失:$\mathcal{L} = \alpha \mathcal{L}_{cls} + \beta \mathcal{L}_{reg}$
- 动态调整权重(如不确定性加权法[^1])
3. **位置编码**
使用可学习嵌入替代正弦编码,适应变长输入
4. **梯度流优化**
- 共享层使用较大学习率
- 任务特定层使用较小学习率
- 梯度裁剪防止爆炸
### 应用场景
此架构适用于:
- 生理信号分析(EEG/ECG分类+异常值回归)[^2]
- 金融时序预测(涨跌分类+价格回归)
- 工业传感器监测(故障分类+剩余寿命预测)