线性代数阶段性总结

                    一:线性代数介绍

线性代数( linear algebra),首先,代数的百度定义:代数是研究数、数量、关系与结构的数学分支。初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。代数的研究对象不仅是数字,而是各种抽象化的结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。常见的代数结构类型有群、环、域、模、线性空间等。线性的百度定义:指量与量之间按比例、成直线的关系,在空间和时间上代表规则和光滑的运动;非线性non-linear则指不按比例、不成直线的关系,代表不规则的运动和突变。从根本上来讲就是指变量X增加△X,则变量Y增加 k△X,即增量之间成固定的比例关系。线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。我们在学习线代时这是需要我们去了解的。

 

                    二:对于线性代数的思考

如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,这就带来了教学上的困难。” * 矩阵究竟是什么东西?向量可以被认为是具有n个相互独立的性质(维度)的对象的表示,矩阵又是什么呢?我们如果认为矩阵是一组列(行)向量组成的新的复合向量的展开式,那么为什么这种展开式具有如此广泛的应用?特别是,为什么偏偏二维的展开式如此有用?如果矩阵中每一个元素又是一个向量,那么我们再展开一次,变成三维的立方阵,是不是更有用? 
* 矩阵的乘法规则究竟为什么这样规定?为什么这样一种怪异的乘法规则却能够在实践中发挥如此巨大的功效?很多看上去似乎是完全不相关的问题,最后竟然都归结到矩阵的乘法,这难道不是很奇妙的事情?难道在矩阵乘法那看上去莫名其妙的规则下面,包含着世界的某些本质规律?如果是的话,这些本质规律是什么? 
* 行列式究竟是一个什么东西?为什么会有如此怪异的计算规则?行列式与其对应方阵本质上是什么关系?为什么只有方阵才有对应的行列式,而一般矩阵就没有(不要觉得这个问题很蠢,如果必要,针对m x n矩阵定义行列式不是做不到的,之所以不做,是因为没有这个必要,但是为什么没有这个必要)?而且,行列式的计算规则,看上去跟矩阵的任何计算规则都没有直观的联系,为什么又在很多方面决定了矩阵的性质?难道这一切仅是巧合? 
* 矩阵为什么可以分块计算?分块计算这件事情看上去是那么随意,为什么竟是可行的? 
* 对于矩阵转置运算AT,有 =,对于矩阵求逆运算A-1,有(AB)-1 =B-1A-1。两个看上去完全没有什么关系的运算,为什么有着类似的性质?这仅仅是巧合吗? 
* 为什么说P-1AP得到的矩阵与A矩阵“相似”?这里的“相似”是什么意思? 
* 特征值和特征向量的本质是什么?它们定义就让人很惊讶,因为Ax =λx,一个诺大的矩阵的效应,竟然不过相当于一个小小的数λ,确实有点奇妙。但何至于用“特征”甚至“本征”来界定?它们刻划的究竟是什么?这些问题是我们学习线性代数必需提出并深刻理解的。

                       三:行列式

行列式与矩阵有着千丝万缕的联系,所以非常有必要在开讲矩阵之前谈谈行列式。行列式的出现以我个人观点看来是为了求解多元线性方程组的,在这里我有必要强调一个概念,那就是方阵与行列式是两个不同的概念,N阶方阵是个数按一定方式排成的数表,而N阶行列式则是这些数按一定的运算法则所确定的一个数。这里有个性质需要提一下,可逆矩阵的转置必可逆,同理,不可逆矩阵的转置必不可逆,因为矩阵的转置运算不改变矩阵的秩,这条定理对应于行列式的性质一:行列式与他的转置行列式相等,矩阵可逆的一个充分必要条件就是|A|不等于0. OK,再接着讨论,下面呢我给解释一下关于行列式的几条性质,性质二:对换行列式的两行,行列式变号。既然牵扯到这儿了,那我们再来开一下脑洞,行列式的物理意义是什么?1,行列式是针对一个的矩阵而言的。表示一个维空间到维空间的线性变换。那么什么是线性变换呢?无非是一个压缩或拉伸啊。假想原来空间中有一个维的立方体(随便什么形状),其中立方体内的每一个点都经过这个线性变换,变成维空间中的一个新立方体。
2,原来立方体有一个体积,新的立方体也有一个体积。
3,行列式是一个数对不对?这个数其实就是  ,结束了
就这么简单?没错,就这么简单
所以说:行列式的本质就是一句话:
行列式就是线性变换的放大率!

所以说我们再来理解一下矩阵可逆的充分必要条件是|A|不等于0 ,从物理意义上来讲,|A|等于零,假设A是一个三维矩阵,那么|A|等于零就意味着压缩成了一个薄片,对于三维空间来讲,它的体积就是0,既然都被压扁了,那么就没有所谓逆操作了。好,讲完科学道理,就让我们来证明一下性质二,A代表原行列式,A*代表经过一次行变换的行列式,那么A+A*的结果就是必有两行是完全相等的,经过行初等变换后,就有一行变为零,那么这个行列式自然就为0,也就是说A+A*=0,那么A=-A*,证毕。这时候有妹纸问了,什么是行初等变换后,听了这个问题我是气的吐血啊,好吧,我再最后讲一遍什么是行列式的行初等变换,行初等变换就是指某一行对另外某一行进行线性变换,懂了吧。再接下来,我们要讲的就是关于行列式计算的核心内容,行列式按行(列)展开,一般来说,低阶行列式的计算比高阶行列式的计算要简便,所以我们自然地要用低阶行列式来表示高阶行列式,首先我们就必须要清楚余子式和代数余子式的概念,然后我们就必须要掌握下面这个引理:一个n阶行列式,如果其中第i行所有元素除(I,j)元外都为零,那么这行列式等于它的代数余子式的乘积。下面我们来证明这个引理。

D= 这是个特殊情形,D=a11 * A11 ,那么一般情况就是Aij 经过i+j次行列变换得到的特殊情况,证毕。好了,知道理论了,就做一道题试试

                                 

保留a33 ,把第三行其余元素变为0,然后按第三行展开,第三行变为0 0 1 0,然后将第三列变为1    按列展开,变为2阶行列式计算结果。

    0

    0

好,我觉得行列式就讲到这里就可以了,下面我们讲解一些例题加深理解。例题详见配图

                    三:矩阵及其运算

我想对于矩阵,对于一个学生来说,最重要的莫过于求AX=0 和AX=b了,这也是我们要逐步带你解决的东西,当然了,这也是线性代数很关键的一个知识点。线性方程组和矩阵也是一家子,对于线性方程组需要讨论以下问题:(1)他是否有解?(2)在有解时它的解是否唯一?(3)如果有多个解,如何让求出他的所有解?对于这些问题,我们完全可以利用矩阵来解决。我们在讲矩阵有什么用?矩阵他还真的有用,很多现在看起来没用的东西,说不定以后就用到了。矩阵的一个很重要的概念就是线性变换,矩阵如果没有了线性变换,几乎就没有学习的意义了。举个例子吧,矩阵所对应的线性变换 这就是一个投影变换。换到矩阵来说,矩阵变换就是核心的一个概念。通过消元法,消元法又是通过矩阵变换实现的,所以说,利用矩阵变换就可以求解矩阵。简单的讲一下步骤吧,先确定主元,注意,0不能做主元,基本化简为U(上三角矩阵),然后回带求解。线性代数到头来的操作你会发现就是行和列的操作罢了,所以我们必须掌握矩阵相乘的运算方法。在这里有一个细节非常重要,就是列向量必须右乘,行向量必须左乘,谨记。如何来求一个矩阵的逆矩阵?课本上求解逆矩阵的方法实在太考验人。它是利用=来求解的,我们看一下他的步骤吧。先计算相应元素的余子式,这里一定要保证符号正确。然后求得相应的代数余子式,然后将得到的矩阵转置,求得A的伴随矩阵,再求解即可。这样一看,简直太麻烦了,矩阵小还可以,大了的话直接崩溃,所以,我们用消元法求解。举例:=I 开始消元,    一次消元     二次消元    左侧为单位矩阵,右侧为A的逆矩阵,OK。下面就来讲一讲矩阵相乘吧,一定要理解透。1:对应位置点乘,最笨的。 2:列方法,  =  你可能不太好理解,那我们就把右乘矩阵拆成p个单独的列向量即可,所以我们就可以说,C中各列是A中各列的线性组合。3:行方法,同列方法,不解释4:我们已经知道,列向量乘行向量得到一个矩阵,那么就可以吧A拆成N列,B拆成N行,类似于点乘,将得到的矩阵相加即可这里还可以补充一个分块矩阵的概念  =  C1=A1B1+A2B2也类似于点乘。

接下来我们就要进入向量空间这一看起来很吓人的概念的总结中,子空间,一个很重要的特征是肯定经过0向量,不经过零向量的空间都不是子空间。什么是列空间?列空间就是矩阵中的列线性组合所得到的空间,空间是满足封闭性的,所以这对于我们思考AX=b有很大的帮助,Ax有解当且仅当右侧向量B属于A的列空间,为什么?你想想看,A的所有列向量都在他们的列空间里,他们再怎么线性组合也跑不出这个空间,这个时候你突然来了个空间以外的向量,那肯定是无解了。下面我们来讲解如何求解Ax=0 也就是所谓的零空间,1:消元 2:确定主列和自由列得到自由变量和主变量 3:对自由变量赋值 4:回带求得一个解,

我们在进行第一步时得到的往往是行阶梯形式。看起来挺简单对不对?但!但!但!你真的明白这其中的细节吗?你明白特解数量的选取是按照什么来的吗?你理解这背后的含义吗?我想你根本还不理解,也就是说,我们不知不觉的又陷入了为考试而学习的境况,这是有多么的可悲。好,我来给你们讲一讲。消元对应于方程组是消去未知数的个数,进而使得未知数的数量减少,便与求解。那么什么是主列?主列代表线性无关的列,自由列代表这一列可由主列线性组合而成,也就是说,我已经由两个列确定一个列空间了,再来的列是无用的。那么两个主列代表什么形状的零空间呢?代表一个面,三个呢?代表一个三维空间了。所以自然而然的,我们就需要秩的数目的特解来构造一个零空间,然后线性组合即可。这里还有个小细节我要提一下,在化简成阶梯形式时,会出现最后一行或多行是0的情况,思考一下,这是什么鬼?这说明这一行可以被其他非零行线性变换得到。还有,我们对于行阶梯型似乎还不满意,为啥子?因为在回带时我们需要把上一个主元所对应的解带到下一个方程中,使得求解过程稍微麻烦了些,并且看起来也不是那么好看。那么什么形式才是R呢?主元都为0就是,最后R的形式为,那么我们由此可以得出零空间矩阵为

,零空间矩阵就是将所有特解作为列的矩阵。我想,对于Ax=0就讲解完了。

好吧,按理说我接下来应该讲如何求解Ax=b了,但不着急,看了几篇文章,赶脚很有启示,截取几段一起分享。首先啊,先说一下线性代数的应用。好吧,为了不弄混,还是开个大类吧。

                        四:线性代数的应用

1、  如果你想顺利地拿到学位,线性代数的学分对你有帮助;
2、如果你想继续深造,考研,必须学好线代.因为它是必考的数学科目,也是研究生科目《矩阵论》、《泛函分析》的基础.例如,泛函分析的起点就是无穷多个未知量的无穷多线性方程组理论.
3、如果你想提高自己的科研能力,不被现代科技发展潮流所抛弃,也必须学好,因为瑞典的L.戈丁说过,没有掌握线代的人简直就是文盲.他在自己的数学名著《数学概观》中说:
要是没有线性代数,任何数学和初等教程都讲不下去.按照现行的国际标准,线性代数是通过公理化来表述的.它是第二代数学模型,其根源来自于欧几里得几何、解析几何以及线性方程组理论.…,如果不熟悉线性代数的概念,像线性性质、向量、线性空间、矩阵等等,要去学习自然科学,现在看来就和文盲差不多,甚至可能学习社会科学也是如此.
4、如果毕业后想找个好工作,也必须学好线代:
l 想搞数学,当个数学家(我靠,这个还需要列出来,谁不知道线代是数学).恭喜你,你的职业未来将是最光明的.如果到美国打工的话你可以找到最好的职业(参考本节后附的一份小资料).
l 想搞电子工程,好,电路分析、线性信号系统分析、数字滤波器分析设计等需要线代,因为线代就是研究线性网络的主要工具;进行IC集成电路设计时,对付数百万个集体管的仿真软件就需要依赖线性方程组的方法;想搞光电及射频工程,好,电磁场、光波导分析都是向量场的分析,比如光调制器分析研制需要张量矩阵,手机信号处理等等也离不开矩阵运算.
l 想搞软件工程,好,3D游戏的数学基础就是以图形的矩阵运算为基础;当然,如果你只想玩3D游戏可以不必掌握线代;想搞图像处理,大量的图像数据处理更离不开矩阵这个强大的工具,《阿凡达》中大量的后期电脑制作没有线代的数学工具简直难以想象.
l 想搞经济研究.好,知道列昂惕夫(Wassily Leontief)吗?哈佛大学教授,1949年用计算机计算出了由美国统计局的25万条经济数据所组成的42个未知数的42个方程的方程组,他打开了研究经济数学模型的新时代的大门.这些模型通常都是线性的,也就是说,它们是用线性方程组来描述的,被称为列昂惕夫“投入-产出”模型.列昂惕夫因此获得了1973年的诺贝尔经济学奖.
l 相当领导,好,要会运筹学,运筹学的一个重要议题是线性规划.许多重要的管理决策是在线性规划模型的基础上做出的.线性规划的知识就是线代的知识啊.比如,航空运输业就使用线性规划来调度航班,监视飞行及机场的维护运作等;又如,你作为一个大商场的老板,线性规划可以帮助你合理的安排各种商品的进货,以达到最大利润.
l 对于其他工程领域,没有用不上线代的地方.如搞建筑工程,那么奥运场馆鸟巢的受力分析需要线代的工具;石油勘探,勘探设备获得的大量数据所满足的几千个方程组需要你的线代知识来解决;飞行器设计,就要研究飞机表面的气流的过程包含反复求解大型的线性方程组,在这个求解的过程中,有两个矩阵运算的技巧:对稀疏矩阵进行分块处理和进行LU分解;作餐饮业,对于构造一份有营养的减肥食谱也需要解线性方程组;知道有限元方法吗?这个工程分析中十分有效的有限元方法,其基础就是求解线性方程组.知道马尔科夫链吗?这个“链子”神通广大,在许多学科如生物学、商业、化学、工程学及物理学等领域中被用来做数学模型,实际上马尔科夫链是由一个随机变量矩阵所决定的一个概率向量序列,看看,矩阵、向量又出现了.
l 另外,矩阵的特征值和特征向量可以用在研究物理、化学领域的微分方程、连续的或离散的动力系统中,甚至数学生态学家用以在预测原始森林遭到何种程度的砍伐会造成猫头鹰的种群灭亡;大名鼎鼎的最小二乘算法广泛应用在各个工程领域里被用来把实验中得到的大量测量数据来拟合到一个理想的直线或曲线上,最小二乘拟合算法实质就是超定线性方程组的求解;二次型常常出现在线性代数在工程(标准设计及优化)和信号处理(输出的噪声功率)的应用中,他们也常常出现在物理学(例如势能和动能)、微分几何(例如曲面的法曲率)、经济学(例如效用函数)和统计学(例如置信椭圆体)中,某些这类应用实例的数学背景很容易转化为对对称矩阵的研究. 

嘿嘿(脸红),说实在的,我也没有足够经验讲清楚线代在各个工程领域中的应用,只能大概人云亦云地讲述以上线代的一些基本应用.因为你如果要真正的讲清楚线代的一个应用,就必须充分了解所要应用的领域内的知识,最好有实际的工程应用的经验在里面;况且线性代数在各个工程领域中的应用真是太多了,要知道当今成为一个工程通才只是一个传说.所以说,你为什么要学习线代,这又让我想起了我大一时想起的我为什么学习离散一样,需要用到的时候才知道自己知识的匮乏。还有,我相信离散的东西和线性的东西绝对是有联系的,这一点我会在学习离散与线代时不断地进行联系。

                  五:关于矩阵以及线性运算的理解

首先说说空间(space),这个概念是现代数学的命根子之一,从拓扑空间开始,一步步往上加定义,可以形成很多空间。线形空间其实还是比较初级的,如果在里面定义了范数,就成了赋范线性空间。赋范线性空间满足完备性,就成了巴那赫空间;赋范线性空间中定义角度,就有了内积空间,内积空间再满足完备性,就得到希尔伯特空间。

但空间有哪些基本属性呢?就好比说水有哪些基本属性呢?水是液体,水在不同环境下会有不同的表现形式等等。那么同样的,空间具有这些基本属性。1. 由很多(实际上是无穷多个)位置点组成;2. 这些点之间存在相对的关系;3. 可以在空间中定义长度、角度;4. 这个空间可以容纳运动,这里我们所说的运动是从一个点到另一个点的移动(变换),而不是微积分意义上的“连续”性的运动。现在再想一个问题,我们研究一种现象或者一样东西时,我们最想首先攻破的是什么?我想肯定是最惹眼的东西,最频繁出现的东西,最有活力的东西,其实,最频繁是我们最常选用的研究重点,所以呀,研究空间,我们研究的就是她的第四条,空间之中的运动。所以说,我们可以说:容纳运动是空间的本质特征。下面我们来看看线性空间。线性空间的定义任何一本书上都有,但是既然我们承认线性空间是个空间,那么有两个最基本的问题必须首先得到解决,那就是:

1. 空间是一个对象集合,线性空间也是空间,所以也是一个对象集合。那么线性空间是什么样的对象的集合?或者说,线性空间中的对象有什么共同点吗?

2. 线性空间中的运动如何表述的?也就是,线性变换是如何表示的?

我们先来回答第一个问题,回答这个问题的时候其实是不用拐弯抹角的,可以直截了当的给出答案。线性空间中的任何一个对象,通过选取基和坐标的办法,都可以表达为向量的形式。通常的向量空间我就不说了,举两个不那么平凡的例子:

L1. 最高次项不大于n次的多项式的全体构成一个线性空间,也就是说,这个线性空间中的每一个对象是一个多项式。如果我们以x0,x1,…, xn为基,那么任何一个这样的多项式都可以表达为一组n+1维向量,其中的每一个分量ai其实就是多项式中x(i-1)项的系数。值得说明的是,基的选取有多种办法,只要所选取的那一组基线性无关就可以。这要用到后面提到的概念了,所以这里先不说,提一下而已。

L2. 闭区间[a,b]上的n阶连续可微函数的全体,构成一个线性空间。也就是说,这个线性空间的每一个对象是一个连续函数。对于其中任何一个连续函数,根据魏尔斯特拉斯定理,一定可以找到最高次项不大于n的多项式函数,使之与该连续函数的差为0,也就是说,完全相等。这样就把问题归结为L1了。后面就不用再重复了。

所以说,向量是很厉害的,只要你找到合适的基,用向量可以表示线性空间里任何一个对象。这里头大有文章,因为向量表面上只是一列数,但是其实由于它的有序性,所以除了这些数本身携带的信息之外,还可以在每个数的对应位置上携带信息。为什么在程序设计中数组最简单,却又威力无穷呢?根本原因就在于此。这是另一个问题了,这里就不说了。对啊,提到这里我们似乎看到了一个更加离谱,却更加值得我们去思考的问题,我们为什么要用数组?数组可以存放数据,并且可以对这些数据进行一系列的操作。那么我们就从他的功能出发,来看一下为什么会有数组的产生。我有一些数据,我需要把它保存下来,那么我就需要一块存储空间,哎,数组就是一块连续的存储空间,好了,那就把这些数据放进去。这些数据都是承载具体实际意义的,所以我们就肯定要从这些数据中获取信息啊。至于这些信息肯定是需求不同因而也变得非常多。既然如此,那我们就不去考虑的这么麻烦。就简单的看一下数组的几个简单的操作。对于数组我想最想象到的简单操作就是下标操作了,这映射到实际问题中就是我想要下标个的数据。再有就是对数组的排序操作了,这个对应于实际问题中也许就是我们最恨可又最想看到的排名问题了,哈哈。好了,就这两个简单的例子吧。在你还未读到我这篇文章之前,你对于矩阵的认识肯定是矩阵是一系列向量的组合。但我现在要告诉你的是一个你从未听说过的概念。线性空间中的运动被称为线性变换,也就是说,从线性空间中的一点运动到另一点就是线性变换。那么这是怎么来完成的呢?课本上是这么定义的Ax=b 哈哈,说好先不讲Ax=b的,还是讲到了,你怎么理解?你肯定是这么想的:一个矩阵,乘一个向量,得到了另一个向量。看看,这是多么傻得理解啊,你学得完全就是一堆数字,根本就不是知识。还有的妹纸这么理解,矩阵中的向量经过x向量的线性组合后变成了B,你能这么理解,说明你是有数学思维的人,可还是不理解什么是线性变换。在线性空间中,当你选定一组基之后,不仅可以用一个向量来描述空间中的任何一个对象,而且可以用矩阵来描述该空间中的任何一个运动(变换)。而使某个对象发生对应运动的方法,就是用代表那个运动的矩阵,乘以代表那个对象的向量。哈,这时你会突然明白,向量是什么?向量只不过是在选定基之后的坐标罢了,坐标是什么?是个点啊妹纸们。X点乘一个矩阵就到了另外一个点,那么太明显了,我们再来解释一下什么是矩阵:一个运动的描述。哈,到这里你是不是脑洞大开呢?是不是感慨线性代数太神奇了,一堆数字,竟然是在描述一个运动!!!在这里,向量是不是一个矩阵?显然是的,我曹,一个点竟然也可以描述运动。是巧合?还是蕴藏着什么巨大的秘密?我不得而知。线性空间里的运动是什么运动?在我们正常的思维里,运动都是连续的,即使是最快的光也必须得经过一个个的点,只不过他的速度太快罢了。那么我们线性空间里的运动是连续的吗?哦,不是的,她是瞬间就完成的一个运动。为什么运动会有连续和不连续之分呢?以我个人肤浅的理解,连续是为了描述问题,不连续是为了解决问题。当然了,有反例,比如量子(例如电子)在不同的能量级轨道上跳跃,就是瞬间发生的,这个不连续却是描述问题。在这里,我想有必要给不连续换一个优雅点的名字:跃迁。所以在修正一下矩阵的解释:矩阵是线性空间里跃迁的描述。可是这样说又太物理,也就是说太具体,而不够数学,也就是说不够抽象。因此我们最后换用一个正牌的数学术语——换。一旦我们理解了“变换”这个概念,矩阵的定义就变成:

“矩阵是线性空间里的变换的描述。”。好吧,我承认我对于矩阵以及线性变换的理解只能局限于此了,我有一个地方是不理解的,也被卡在这了。为什么一个矩阵可以描述一个变换?难道就是因为简单的相乘操作?那么为什么需要矩阵来相乘而不是乘一个数?我不理解,算了,以后再想吧。

                六:Ax=b的求解

上面说了这么多,其实最后要讲的就是这个Ax=b的求解,连傻子都知道我们只要会这个,那么我们就可以求解多元线性方程组。首先我们要明确,Ax=b可能有解,也可能无解,这可以通过矩阵消元来看一下有解的条件。并且我们还要知道是有唯一解还是很多解。首先我们应该化成增广矩阵,然后消元,确定有解的条件,根据这个条件找一个b的特解,然后令自由变量全是0,回带,求解便可以得出一个特解。接下来要做的解释求它的零空间。OK,这里,我们还需要注意一个问题,其通解是一个零空间吗?不是的,因为他不经过0点。然后回到上面那个问题,什么时候只有一个解?从通解公式中我们很明显的看到只要零空间只有一个0向量即可,只有一个零向量意味着什么?说明没有自由变量,没有自由变量说明什么?说明全是主列,再说的高大上一点就是这个矩阵是满秩矩阵,也就是说这个矩阵的线性空间是 ()。

              七:总结报告

这次报告由于时间原因做的很仓促,高精尖的东西都没讲到,下次的阶段性总结我会从刚开始更新就开始写。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值