Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Your goal is to reach the last index in the minimum number of jumps.
题目的大意是给定一些非负整数,每个数字代表可以到达的最大的步长。
目标是从开头到结尾用最少的跳数。
贪心法
每一跳的决策选择依据:跳至的下个位置再跳能达到最远的可能距离。
那么下个位置i能到达的可能距离是i+nums[i],
其中i是这一跳能够达到的地方。
很明显一开始的时候i只能是第一个位置,然后i的选择可以是在nums[0]里面。
每跳到下一个位置跳数就加一
需要存放的结果有下一跳最远可能到达的位置max_p
搜索这一跳位置的指针i,下一跳的位置st,也就是下一跳指针的初始位置,下一条指针的终止位置ed,下一跳最远的距离p
跳数step
代码如下
step,i,max_p,st,ed=0,0,0,0,0
while i<len(nums)-1:
p=i+nums[i]
if p>max_p:
max_p=p
st=i
if i==ed:
i,step,ed=st,step+1,max_p
i+=1
是否有跳的方案
class Solution:
def canJump(self, nums: List[int]) -> bool:
reach=0
for i in range(len(nums)):
if i>reach:
return False
reach=max(reach,i+nums[i])
if reach>=len(nums)-1:
return True
return False