leetcode45Jump game

Given an array of non-negative integers, you are initially positioned at the first index of the array.

Each element in the array represents your maximum jump length at that position.

Your goal is to reach the last index in the minimum number of jumps.
题目的大意是给定一些非负整数,每个数字代表可以到达的最大的步长。
目标是从开头到结尾用最少的跳数。
贪心法
每一跳的决策选择依据:跳至的下个位置再跳能达到最远的可能距离。
那么下个位置i能到达的可能距离是i+nums[i],
其中i是这一跳能够达到的地方。
很明显一开始的时候i只能是第一个位置,然后i的选择可以是在nums[0]里面。
每跳到下一个位置跳数就加一
需要存放的结果有下一跳最远可能到达的位置max_p
搜索这一跳位置的指针i,下一跳的位置st,也就是下一跳指针的初始位置,下一条指针的终止位置ed,下一跳最远的距离p
跳数step

代码如下

step,i,max_p,st,ed=0,0,0,0,0
while i<len(nums)-1:
	p=i+nums[i]
	if p>max_p:
		max_p=p
		st=i
	if i==ed:
		i,step,ed=st,step+1,max_p
	i+=1
		

是否有跳的方案

class Solution:
    def canJump(self, nums: List[int]) -> bool:
        reach=0
        for i in range(len(nums)):
            if i>reach:
                return False
            reach=max(reach,i+nums[i])

            if reach>=len(nums)-1:
                return True
           
            
            
        return False
                
内容概要:本文详细介绍了利用COMSOL进行边坡降雨入渗数值模拟的方法,特别是针对流量-压力混合边界条件的应用。首先讨论了几何建模的最佳实践,如使用AutoCAD绘制并导入DXF文件,确保边坡角度和高度符合实际工程场景。接着深入探讨了混合边界条件的核心控制方程及其在COMSOL中的具体实现方式,强调了根据降雨强度动态切换边界类型的必要性和实现细节。文中还提供了关于计算收敛性的宝贵经验和技巧,包括初始条件的选择、时间步长的设定以及网格划分策略。此外,作者分享了后处理阶段的数据可视化方法,展示了不同降雨强度下边坡渗流场的变化特性,并解释了一些反直觉的现象,如特大暴雨时边坡底部可能出现负压区。 适合人群:从事岩土工程、环境科学及相关领域的研究人员和技术人员,尤其是那些希望深入了解边坡稳定性分析和数值模拟的人群。 使用场景及目标:适用于需要评估边坡在不同降雨条件下稳定性的项目,帮助预测潜在滑坡风险,优化防灾减灾措施的设计。通过掌握混合边界条件的处理方法,提高模拟精度,更好地理解和预测边坡行为。 其他说明:文中提供的代码片段和实践经验对于初学者来说非常有价值,能够显著减少建模过程中常见的错误和技术难题。同时,所介绍的技术手段不仅限于COMSOL软件,相关理念也可应用于其他类似的数值模拟工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值