leetcode76. Minimum Window Substring

题目大意是给出一个字符串s,和一个字符串t,求最短的s子串,其中包含了t的所有字母。
这道题目最让人受益匪浅的是两个字符串的记录字符出现的次数的比较方法,我原以为逐个去比较。想不到居然是一加一减的形式。
t中的每个字符出现的次数-遍历s的过程中的子串中的字符出现的次数
如果为正,说明子串中的字符不够
如果为零,说明正好
如果为负,子串中的字符多了
其次是通过子串的头尾指针分别加减字符的数量。
如果尾指针对应的字符减
头指针的加
如果尾指针对应的字符仍旧是大于等于0,总长度减
如果头指针对应的字符大于0了,总长度加
具体的代码如下

from collections import defaultdict
class Solution:
    def minWindow(self, s: str, t: str) -> str:
        hashtable=defaultdict(int)
        left,right=0,0
        res=''
        #首先对t中字符计数
        for i in t:
            hashtable[i]+=1
        #用ln_t记录下t的长度,当ln_t减到0的时候也就是子串完全包含了t
        ln_t=len(t)
        while(right<len(s)):
            if s[right] in t:
            #子串碰到一个在t中出现的字符就减掉一个计数。如果是负数,意思是子串中比t
            #多的次数。
                hashtable[s[right]]-=1
                if hashtable[s[right]]>=0:
                    ln_t-=1
            while ln_t==0:
                if res=='':
                    res=s[left:right+1]
                elif len(res)>right-left+1:
                    res=s[left:right+1]
                if s[left] in t:
                #left向右移的时候,子串中的字符在不断减少,这是t中的字符计数相应增
                #加
                    hashtable[s[left]]+=1
                    if hashtable[s[left]]>0:
                        ln_t+=1
                left+=1
            right+=1
            
        return res
                
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  

            
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值