tensorflow矩阵基础

这篇博客介绍了在TensorFlow中进行矩阵运算的基础知识,包括如何进行矩阵相乘及特殊矩阵的初始化。内容涵盖基本的矩阵操作和结果展示,如得到[[24]], [[9 9]], 和二维矩阵[[12 12][12 12]]等实例。" 6764319,1045114,C++继承与成员访问控制详解,"['C++', '面向对象', '编程', '继承']
摘要由CSDN通过智能技术生成

预先定义好的数据不能满足要求,需要实时插入的数据

import tensorflow as tf
data1=tf.placeholder(tf.float32)
data2=tf.placeholder(tf.float32)
dataAdd=tf.add(data1.data2)
with tf.Session() as sess:
      print(sess.run(dataAdd,feed_dict={data1:1,data2:2}))
      #1 dataAdd 2 data(feed_dict={:,:})
import tensorflow as tf
data1=tf.constant([[6,6]])#一行两列
data2=tf.constant([[2],[2]])#两行一列
data3=tf.constant([[1,2],[3,4],[5,6]])#三行两列
print(data3.shape)
with tf.Session() as sess:
     print(sess.run(data3[0]))#打印第一行
     print(sess.run(data3[:,0]))#打印第一列

矩阵运算

import tensorflow as tf
data1 = tf.constant([[6,6]])#1*2类型
data2 = tf.constant([[2],
                     [2]])#2*1类型
data3 = tf.constant([[3,3]])
data4 = tf.constant([[1,2],
                     [3,4],
                     [5,6]])
matMul = tf.matmul(data1,data2)
matMul2 = tf.multiply(data1,data2)
matAdd = tf.add(data1,d
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值