前言
最近疫情的原因不能在实验室跑代码,加之老师让跑一个跟踪的test代码,然而笔记本跑起来费力,想到了之前在google colab上面跑过深度学习,于是就有了下文。
配置Google Drive
以我最近跑的代码SiamFC++为例:首先先下载github上面的代码SiamFCpp至本地,当然也可以直接在colab上面使用git clone命令,
下载至本地之后可以看见它的目录是这样的:
然后我们上传至google drive:
接着我们去model_zoo把人家训练好的模型给复制过来到我们的云端硬盘
就像这样:
至此云端硬盘的准备工作就完成了。
配置Google Colab
紧接着我们需要来配置google colab:
新建一个笔记本然后
在笔记本设置中选择GPU:
接着导入一些相关库并挂载google drive,然后复制授权进去回车如下:
import os
from google.colab import drive
drive.mount('/content/drive/')
然后运行下面代码将工作路径添加到我们要跑的代码的根目录
os.chdir('/content/drive/My Drive/video_analyst/')
此时我们可以看见我们的目录树如下:
我们也可以使用 ls 命令来查看当前路径里面的内容如下:
然后安装必要的python 库,好在requirement.txt里面已经为我们准备好了,我们可以直接运行如下命令,系统会自动安装,速度很快。
pip install -r ./requirements.txt
紧接着我们需要编译一下vot的包,我们运行如下命令:
cd videoanalyst/evaluation/vot_benchmark/pysot/utils/
然后:
!python3 setup.py build_ext --inplace
然后运行多次如下代码返回至我们的根目录(ls之后乳腺的图就是我们的根目录)
cd ..
接着我们需要改一下加载模型的路径如下:
本人当前写博客的时候也在colab上面跑代码为保险起见我直接从drive里面操作
更改模型路径至如下图:
然后保存,紧接着运行代码如下:
其中–config后面的内容可以根据情况自己选择如下:
因为代码被我改过有点不同本人跑的是otb代码先已经上传谷歌云需要的可以自取SiamFCpp_OTB。
google colab 的代码也已经共享在google driveColab Noetbook代码。
另外吐槽一下:这速度不咋地虽然是tesla K80,个人感觉可能瓶颈存在于谷歌硬盘那儿读取数据。