谷歌机器学习速成课程笔记 7(Training and Testing-训练集和测试集)

本文介绍了机器学习中训练集和测试集的作用。训练集用于构建模型,其规模越大,学习效果越好;测试集用于评估模型,规模越大,评估结果越可靠。

看了谷歌机器学习的视频,受益颇多,纯属想记录下免得以后忘了,٩(๑❛ᴗ❛๑)۶

训练集用于训练构建模型,测试集用于测试该模型是否合格。

  • 训练集规模越大,模型的学习效果就越好
  • 测试集规模越大,我们对于评估指标的信心越充足,置信区间就越窄
    这里写图片描述

这里写图片描述

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值