人工智能-神经网络
桑榆非晚_
这个作者很懒,什么都没留下…
展开
-
视频理解(大规模网络数据和弱监督学习)-基本问题和经典方法
本文为视频理解通用视觉框架OpenMMLab系列课程 第八讲 视频理解(弱监督学习)的记录。原创 2021-07-29 01:40:05 · 337 阅读 · 1 评论 -
视频理解(基于3D卷积的方法(主要是视频分类/动作识别))-基本问题和经典方法
本文为视频理解通用视觉框架OpenMMLab系列课程 第八讲 视频理解(3D卷积方法)的记录。更高效的3D卷积网络:第一种:2D卷积和3D卷积混合使用。第二种:把3D卷积分解成空间、时间维度。第三种:减少3D卷积的输入/输出通道数。...原创 2021-07-29 01:03:10 · 2991 阅读 · 0 评论 -
视频理解(基于光流和2D卷积的动作识别方法)-基本问题和经典方法
本文为视频理解通用视觉框架OpenMMLab系列课程 第八讲 视频理解(光流和2D卷积方法)的记录。目前最著名的非深度学习光流估计法:① Dense Trajectories:首先计算轨迹特征(30维),再计算局部特征(426维),然后拼接起来,得到轨迹① iDT(improved Dense Trajectories):目前经典的深度学习光流估计法:...原创 2021-07-28 23:43:45 · 1065 阅读 · 0 评论 -
视频理解-(应用、主要任务、主要挑战)-介绍
本文为视频理解通用视觉框架OpenMMLab系列课程 第八讲 视频理解的记录。当下短视频日渐流行,各视频平台每日上传视频量暴增。那么如何对这些视频进行一些应用或处理呢?视频的一些智能应用场景:视频理解的基本任务:视频理解现存的3个挑战/重点问题:挑战①:解决挑战1的两种思路:挑战②:挑战③:...原创 2021-07-28 19:02:25 · 4337 阅读 · 0 评论 -
图像修复-基本问题和经典方法
本文为通用视觉框架OpenMMLab系列课程 第七讲 底层视觉(下)-图像修复的记录。加入GAN损失之后,细节会逼真和清晰一点。补充:部分卷积 Partial Convolutional(PConv)部分卷积将卷积分为了输入图片的卷积和输入掩码mask的卷积。之前的论文都是只在第一层使用mask,mask也不会得到跟新,本文的partial convolutions,每次都使用跟新后的mask,随着网络层数的增加,mask输出m’中为0的像素越来越少,输出的结果x’中.原创 2021-07-26 15:46:37 · 3726 阅读 · 1 评论 -
图像转译-基本问题和经典方法
本文为通用视觉框架OpenMMLab系列课程 第七讲 底层视觉(下)-图像转译的记录。解决方法(Pix2Pix、cycleGAN):加入条件判断① (生成器无论生成什么,不管像不像,判别器都应判为0)加入条件判断② (生成器无论生成什么,判别器都应判为0)加入条件判断③ (生成器无论生成什么,不管像不像,判别器都应判为0)cycleGAN包含两个生成器,两个判别器,从而构成循环一致性的判别和生成。除了cycleGAN,还有其他许多针对“非成对数据集”的“风.原创 2021-07-26 14:39:11 · 517 阅读 · 0 评论 -
图像配准/对齐的一些方法
非下采样轮廓波变换Nonsubsampled Contourlet变换(NSCT) 可以作为一种手段。单应性矩阵多尺度特征 + 可变形卷积伪影抑制注意力机制(多曝光融合任务中)原创 2021-03-19 19:58:50 · 1254 阅读 · 0 评论 -
残差网络原理理解
额,,,,我是直接看百度百科的,个人觉得这个就很好理解,尤其是下面的5.1~5.2的例子。(这个文章确实可能比较简单,主要是给自己看的哈~所以没有自己写~)原创 2020-09-10 14:16:48 · 427 阅读 · 0 评论 -
图像去模糊——暗通道
最近在研究图像去模糊方法的传统方法(非深度学习方法),以下记录一下何凯明大神的暗通道方法。论文链接:Single Image Haze Removal Using Dark Channel Prior_CVPR_2009另外我看的是博客:暗通道优先的图像去雾算法(上)以及暗通道优先的图像去雾算法(下)来学习该方法的。由于时间问题,我只是在稿纸上记录了以下自己的心得和算法过程,太粗糙了,大...原创 2019-04-13 19:54:25 · 4084 阅读 · 1 评论 -
为什么L0正则化是一个NP难解问题?
1. 矩阵的L0范数矩阵的L0范数就是非0元素的个数,通常用它来表示稀疏,L0范数越小0元素越多,也就越稀疏。例如 A=[-1, 2, -3; 4, -6, 6]的L0范数就是:6。2. 为什么L0可以用来计算非0的个数?当p 趋近于0的时候,这个函数就只有在x= 0的时候 等于0,其他的位置都为1! 也就是说,L0-Norm可以用于表达一个向量/矩阵的稀疏性!3. 求解L0-norm...原创 2019-04-16 16:17:27 · 4962 阅读 · 0 评论 -
A Comparative Study for Single Image Blind Deblurring(CVPR2016)阅读笔记
两个缺点当下的【单张图形去模糊算法评价方法】通常有以下两个缺点:首先,合成生成的模糊图像经常无法捕获真实运动模糊降级的复杂性和特征。例如,相机运动具有6个自由度(3个平移和3个旋转),而卷积模型仅考虑平行于图像平面的2D平移[17,18]。在这些合成生成的图像中也不考虑镜头失真,传感器饱和度,非线性变换函数,噪声和相机流水线中的压缩。此外,卷积模型中的恒定场景深度假设和非均匀模糊基准...原创 2019-04-11 22:11:02 · 862 阅读 · 0 评论 -
逻辑回归和线性回归区别
1)线性回归要求变量服从正态分布,logistic回归对变量分布没有要求。2)线性回归要求因变量是连续性数值变量,而logistic回归要求因变量是分类型变量。3)线性回归要求自变量和因变量呈线性关系,而logistic回归不要求自变量和因变量呈线性关系4)logistic回归是分析因变量取某个值的概率与自变量的关系,而线性回归是直接分析因变量与自变量的关系总之, logistic回归与...转载 2018-09-21 10:24:58 · 18060 阅读 · 0 评论 -
Ubuntu16.04安装IntelCaffe(根据官方文档)
安装需要的包或依赖项PrerequisiteUbuntu 16.04Open a Terminal windowsudo apt-get updatesudo apt-get install build-essential cmake git pkg-configsudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-d原创 2017-05-28 02:30:10 · 1222 阅读 · 0 评论