第20步 机器学习分类实战:Logistic回归建模(上)


前言

终于到建模这一步了,所谓建模就是调参(选择合适的参数让模型性能最好)。首先介绍Python的sklearn包的调参;其次是介绍一款傻瓜软件,SPSSPRO,小白都能上手的操作方式(缺点就是一些功能被阉割),不过适合快速建模。


一、Python调参

(1)建模前的准备

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
dataset = pd.read_csv('X disease code fs.csv')
X &
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jet4505

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值