第30步 机器学习分类实战:朴素贝叶斯建模


前言

朴素贝叶斯建模。


一、数据预处理

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
dataset = pd.read_csv('X disease code fs.csv')
X = dataset.iloc[:, 1:14].values
Y = dataset.iloc[:, 0].values

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.30, random_state = 666)
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

二、NB的调参策略

先复习一下参数(传送门),需要调整的参数有:
① priors:先验概率大小,如果没有给定,模型则根据样本数据自己计算(利用极大似然法),这个可以不调。
② var_smoothing:所有特征的最大方差部分,添加到方差中用于提高计算稳定性,默认1e-9。


三、NB调参演示

(A)先默认参数走一波:

from sklearn.naive_bayes import GaussianNB
classifier = GaussianNB()
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
y_testprba = classifier.predict_proba(X_test)[:,1] 
y_trainpred = classifier.predict(X_train)
y_trainprba = classifier.predict_proba(X_train)[:,1]
from sklearn.metrics import confusion_matrix
cm_test = confusion_matrix(y_test, y_pred)
cm_train = confusion_matrix(y_train, y_trainpred)
print(cm_train)
print(cm_test)

结果还可以:
在这里插入图片描述
在这里插入图片描述
调整一下参数:
(B)调var_smoothing:

from sklearn.naive_bayes import GaussianNB
param_grid=[{
             'var_smoothing': [1e-9,1e-6,1e-4,1e-3,1e-2,1,10,100],
           },
           ]
boost = GaussianNB() 
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(boost, param_grid, n_jobs = -1, verbose = 2, cv=10)      
grid_search.fit(X_train, y_train)    
classifier = grid_search.best_estimator_  
classifier = classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
y_testprba = classifier.predict_proba(X_test)[:,1] 
y_trainpred = classifier.predict(X_train)
y_trainprba = classifier.predict_proba(X_train)[:,1]
from sklearn.metrics import confusion_matrix
cm_test = confusion_matrix(y_test, y_pred)
cm_train = confusion_matrix(y_train, y_trainpred)
print(cm_train)
print(cm_test)

结果:
在这里插入图片描述
在这里插入图片描述
最优模型:GaussianNB(var_smoothing=1)
性能一般般吧,勉强过得去:
在这里插入图片描述
在这里插入图片描述

总结

终于,把是个最经典的机器学习分类模型的大致调参策略都介绍完了,头发掉了不少,我发现写流程跟自己分析数据差距还是很大的,需要更多的精力和时间。
当然还没完,还需要大家把所有十个模型的性能参数进行归类,找出有好的模型!
接下来,我会把之前埋的坑补上,然后这个阶段——ML分类建模就告一段落了。

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
1. K-近邻算法:K-近邻算法是一种基于实例的学习方法,它通过计算样本之间的距离,将新的样本赋予距离最近的K个样本出现次数最多的类别,作为该新样本的类别。该算法简单易懂,但容易受到噪声和样本分布的影响。 2. 决策树算法:决策树算法是一种基于树形结构的分类方法,它通过对数据集进行分裂,不断构建树形结构,最终得到一个决策树模型。决策树的优点是易于理解和解释,但容易出现过拟合问题。 3. 朴素贝叶斯算法:朴素贝叶斯算法是一种基于概率统计的分类算法,它通过计算样本属于每个类别的概率,选择概率最大的类别作为该样本的分类。该算法简单、快速,但对于特征之间存在依赖关系的数据集效果不佳。 4. 逻辑回归算法:逻辑回归算法是一种广义线性模型,它通过对数据进行建模,将输入特征映射到0到1之间的概率值,从而进行分类。该算法易于实现和解释,但容易受到异常值和共线性的影响。 5. 支持向量机算法:支持向量机算法是一种基于边界的分类方法,它通过找到数据集的最优超平面,将不同类别的样本分隔开来。该算法具有很好的泛化性能,但计算复杂度较高。 6. 随机森林算法:随机森林算法是一种集成学习方法,它通过构建多个决策树,并对每个树进行随机特征选择和样本选择,最终通过投票的方式进行分类。该算法具有很好的鲁棒性和泛化性能,但模型解释性较差。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jet4505

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值