Scikit-Learn学习笔记——SVM应用:人脸识别

本文探讨了在实际人脸识别问题中,如何利用SVM进行分类。重点在于在不规则照片中提取人脸特征,通过结合openCV和其他图像处理技术,提取与像素无关的人脸特征,以实现更准确的识别。
摘要由CSDN通过智能技术生成

SVM应用——人脸识别

#下载数据
from sklearn.datasets import fetch_lfw_people
faces = fetch_lfw_people(min_faces_per_person=60)
print(faces.target_names)
print(faces.images.shape)

#输出结果
['Ariel Sharon' 'Colin Powell' 'Donald Rumsfeld' 'George W Bush'
 'Gerhard Schroeder' 'Hugo Chavez' 'Junichiro Koizumi' 'Tony Blair']
(1348, 62, 47)
#画一些人脸,看看需要处理的数据
import matplotlib.pyplot as plt
import seaborn as sns;sns.set()
fig, ax = plt.subplots(3,5)
fig.subplots_adjust(left=0.0625, right=1.2, wspace=1)
for i, axi in enumerate(ax.flat):
    axi.imshow(faces.images[i], cmap=
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值