LeetCode 4. 寻找两个正序数组的中位数(C++) 划分数组

给定两个大小为 mn 的正序(从小到大)数组 nums1nums2。请你找出并返回这两个正序数组的中位数。
进阶:你能设计一个时间复杂度为 O(log (m+n)) 的算法解决此问题吗?

示例 1:

输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2

示例 2:

输入:nums1 = [1,2], nums2 = [3,4]
输出:2.50000
解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5

示例 3:

输入:nums1 = [0,0], nums2 = [0,0]
输出:0.00000

示例 4:

输入:nums1 = [], nums2 = [1]
输出:1.00000
示例 5:
输入:nums1 = [2], nums2 = []
输出:2.00000

在这里插入图片描述

划分数组

思路与算法
为了使用划分的方法解决这个问题,需要理解「中位数的作用是什么」。在统计中,中位数被用来:

将一个集合划分为两个长度相等的子集,其中一个子集中的元素总是大于另一个子集中的元素。

如果理解了中位数的划分作用,就很接近答案了。
首先,在任意位置 i 将 A 划分成两个部分:

       left_A            |          right_A
A[0], A[1], ..., A[i-1]  |  A[i], A[i+1], ..., A[m-1]

将 left_A 和 left_B 放入一个集合,并将 right_A 和 right_B 放入另一个集合。 再把这两个新的集合分别命名为 left_part 和 right_part:

      left_part          |         right_part
A[0], A[1], ..., A[i-1]  |  A[i], A[i+1], ..., A[m-1]
B[0], B[1], ..., B[j-1]  |  B[j], B[j+1], ..., B[n-1]

当 A 和 B 的总长度是偶数时,如果可以确认:

len(left_part)=len(right_part)
max(left_part)≤min(right_part)

那么,{A,B} 中的所有元素已经被划分为相同长度的两个部分,且前一部分中的元素总是小于或等于后一部分中的元素。中位数就是前一部分的最大值和后一部分的最小值的平均值:
在这里插入图片描述
当 A 和 B 的总长度是奇数时,如果可以确认:

len(left_part)=len(right_part)+1
max(left_part)≤min(right_part)

那么,{\text{A}, \text{B}}{A,B} 中的所有元素已经被划分为两个部分,前一部分比后一部分多一个元素,且前一部分中的元素总是小于或等于后一部分中的元素。中位数就是前一部分的最大值:

median=max(left_part)

第一个条件对于总长度是偶数和奇数的情况有所不同,但是可以将两种情况合并。第二个条件对于总长度是偶数和奇数的情况是一样的。
要确保这两个条件,只需要保证:

i+j=m−i+n−j(当 m+n 为偶数)或 i + j = m - i + n - j + 1(当 m+n 为奇数)。
等号左侧为前一部分的元素个数,等号右侧为后一部分的元素个数。将 i 和 j 全部移到等号左侧,
我们就可以得到 i+j= (m+n+1)÷2 。这里的分数结果只保留整数部分。
0≤i≤m,0≤j≤n。如果我们规定A 的长度小于等于B 的长度,即 m≤n。这样对于任意的 i∈[0,m],
都有 j= ( m+n+1)÷2−i∈[0,n],那么我们在 [0, m] 的范围内枚举 i 并得到 j,
就不需要额外的性质了。
如果 A 的长度较大,那么我们只要交换 A 和 B 即可。
如果 m>n ,那么得出的 j 有可能是负数。
B[j−1]≤A[i] 以及 A[i−1]≤B[j],即前一部分的最大值小于等于后一部分的最小值。

为了简化分析,假设 A[i−1],B[j−1],A[i],B[j] 总是存在。对于 i=0、i=m、j=0、j=n 这样的临界条件,我们只需要规定 A[−1]=B[−1]=−∞,A[m]=B[n]=∞ 即可。这也是比较直观的:当一个数组不出现在前一部分时,对应的值为负无穷,就不会对前一部分的最大值产生影响;当一个数组不出现在后一部分时,对应的值为正无穷,就不会对后一部分的最小值产生影响。

所以我们需要做的是:

在 [0, m] 中找到 i,使得:
B[j−1]≤A[i] 且 A[i−1]≤B[j],其中 j= (m+n+1)÷2 −i
我们证明它等价于:
在 [0,m] 中找到最大的 i,使得:
A[i−1]≤B[j],其中 j= (m+n+1)÷2−i

这是因为:

当 i 从 0∼m 递增时,A[i−1] 递增,B[j] 递减,所以一定存在一个最大的 i 满足 A[i−1]≤B[j];
如果 i 是最大的,那么说明 i+1 不满足。将 i+1 带入可以得到 A[i]>B[j−1],也就是 B[j - 1] < A[i],就和我们进行等价变换前 i 的性质一致了(甚至还要更强)。
因此我们可以对 i 在 [0,m] 的区间上进行二分搜索,找到最大的满足 A[i−1]≤B[j] 的 i 值,就得到了划分的方法。此时,划分前一部分元素中的最大值,以及划分后一部分元素中的最小值,才可能作为就是这两个数组的中位数。

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        if (nums1.size() > nums2.size()) {//确保第一个数组的长度小于第二个数组
            return findMedianSortedArrays(nums2, nums1);
        }
        
        int m = nums1.size();
        int n = nums2.size();
        int left = 0, right = m;
        // median1:前一部分的最大值
        // median2:后一部分的最小值
        int median1 = 0, median2 = 0;

        while (left <= right) {
            // 前一部分包含 nums1[0 .. i-1] 和 nums2[0 .. j-1]
            // 后一部分包含 nums1[i .. m-1] 和 nums2[j .. n-1]
            int i = (left + right) / 2;
            int j = (m + n + 1) / 2 - i;

            // nums_im1, nums_i, nums_jm1, nums_j 分别表示 nums1[i-1], nums1[i], nums2[j-1], nums2[j]
            int nums_im1 = (i == 0 ? INT_MIN : nums1[i - 1]);//我们只需要规定 A[−1]=B[−1]=−∞,A[m]=B[n]=∞ 即可,当前行 及以下三行
            int nums_i = (i == m ? INT_MAX : nums1[i]);
            int nums_jm1 = (j == 0 ? INT_MIN : nums2[j - 1]);
            int nums_j = (j == n ? INT_MAX : nums2[j]);

            if (nums_im1 <= nums_j) {//nums1[i - 1]<=nums2[j] 从而确保 max(left_part)≤min(right_part)
                median1 = max(nums_im1, nums_jm1);// nums1[i-1]和 nums2[j-1]取最大值
                median2 = min(nums_i, nums_j);//nums1[i]和nums2[j]取最小值
                left = i + 1;//递增遍历左侧 分隔符右移 其实就是把nums[i]放在分割线左侧  nums2[j]移到分割线右侧
            } else {//nums_im1 > nums_j   相当于条件 B[j−1]≤A[i] 且 A[i−1]≤B[j] 其中的A[i−1]≤B[j]取反
                right = i - 1;//递减遍历右侧 其实就是把nums1[i-1]移到分割线右侧 nums2[j]移到分割线左侧
            }
        }

        return (m + n) % 2 == 0 ? (median1 + median2) / 2.0 : median1;//m+n的和为偶数  则(median1 + median2) / 2.0
    }
};

复杂度分析

时间复杂度:O(log min(m,n))),其中 m 和 n 分别是数组 nums 1 和 nums 2的长度。查找的区间是 [0, m],而该区间的长度在每次循环之后都会减少为原来的一半。所以,只需要执行 log m 次循环。由于每次循环中的操作次数是常数,所以时间复杂度为 O(log m)。由于我们可能需要交换 nums 1和 nums 2使得m≤n,因此时间复杂度是 O(log min(m,n)))。
空间复杂度:O(1)。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值