多视角子空间学习系列之 CCA 典型相关分析

多视角学习与子空间学习

多视角学习(Multi-view learning)是陶大成提出的一个研究方向。我们都知道,在机器学习中样本可以用不同的特征(如图片可以用LBP、SIFT等特征)来表示,或者从不同的角度进行观察(如从前后左右观察一个对象),甚至是采用不同的传感器来观测(如RGB摄像头,Depth摄像头),这些不同的观测手段、角度或特征在多视角学习中称为“视角”。多视角学习通过对不同的视角进行统一分析和研究,希望能够得到更好的分类或聚类等等的效果。
陶大成把现有的可用于多视角学习的方法分为三类:(1)Co-training 联合训练 (2)Multiple Kernel Learning 多核学习 (3)Subspace Learning 子空间学习。 我所研究的正是Subspace Learning这个方向。

每个样本可以看做是高维空间上分布的一个点,每个视角所有的样本的分布构成一个样本空间,子空间学习(Subspace Learning)认为这些样本空间存在一个潜藏的公共子空间,各视角的各样本在这个公共子空间中都有一个投影,或者叫做表示。子空间学习的目标就是寻找到这个公共子空间,并让各样本在其中的表示具有更好的某些性质,或者保持原始分布的某些性质。如果子空间的维度低于原始样本空间的维度,就产生了降维的问题,因此子空间学习与多视角降维几乎是同一个问题。
子空间学习要面对的主要问题是,不同的视角的数据维度可能是不相同的,这使得跨视角的度量变得困难。

从CCA开始我写博客介绍一些子空间学习方法,我在这个领域的研究是从CCA开始的,我对CCA的学习也是因为当时要研究这个领域。

优化目标

CCA(Canonical Correlation Analysis)典型相关分析是最经典的子空间学习方法。它是一种线性无监督的方法,能处理视角数量是两个。给定两个做过中心化的视角 X 1 ∈ R D 1 × n , X 2 ∈ R D 2 × n X_1\in \mathbb{R}^{D_1\times n},X_2\in \mathbb{R}^{D_2\times n} X1RD1×n,X2RD2×n的样本,其中 D 1 , D 2 D_1,D_2 D1,D2表示二者的维度,两者未必相等,两个视角的样本数量均为 n n n,一列为一个样本。CCA希望找到两个线性的转换矩阵 W 1 ∈ R D 1 × d , W 2 ∈ R D 2 × d , d ≤ m i n ( D 1 , D 2 ) W_1\in \mathbb{R}^{D_1\times d},W_2\in \mathbb{R}^{D_2\times d},d\leq min(D_1,D_2) W1RD1×d,W2RD2×d,dmin(D1,D2)使得 W 1 T X 1 W_1^TX_1 W1TX1 W 2 T X 2 W_2^TX_2 W2TX2的相关系数最大。这就是CCA的优化目标和求解目标。
来复习一下相关系数的公式,如果 a , b a,b a,b为两列随机变量, a , b a,b a,b的相关系数 r ( a , b ) r(a,b) r(a,b)定义为
r ( a , b ) = C o v ( a , b ) V a r ( a ) V a r ( b ) C o v ( a , b ) = E [ a − E ( a ) ] E [ b − E ( b ) ] = E ( a b ) − E ( a ) E ( b ) r(a,b)=\frac{Cov(a,b)}{\sqrt{Var(a)Var(b)}} \\ Cov(a,b)=E[a-E(a)]E[b-E(b)]=E(ab)-E(a)E(b) r(a,b)=Var(a)Var(b) Cov(a,b)Cov(a,b)=E[aE(a)]E[bE(b)]=E(ab)E(a)E(b)

C o v Cov Cov是协方差, V a r Var Var是方差。若 Y 1 = W 1 T X 1 , Y 2 = W 2 T X 2 Y_1=W_1^TX_1,Y_2=W_2^TX_2 Y1=W1TX1,Y2=W2TX2,CCA的目标就是使二者的相关系数最大化, Y 1 ∈ R d × n , Y 2 ∈ R d × n Y_1\in \mathbb{R}^{d\times n},Y_2\in \mathbb{R}^{d\times n} Y1Rd×n,Y2Rd×n就是 X 1 , X 2 X_1,X_2 X1,X2在公共子空间的表示。

d = 1 d=1 d=1的Lagrangian乘子法解

d = 1 d=1 d=1 W 1 , W 2 W_1,W_2 W1,W2都为向量,我们改用 w 1 , w 2 w_1,w_2 w1,w2表示。此时:
C o v ( w 1 T X 1 , w 2 T X 2 ) = E ( w 1 T X 1 X 2 T w 2 ) − E ( w 1 T X 1 ) E ( w 2 T X 2 ) Cov(w_1^TX_1,w_2^TX_2)=E(w_1^TX_1X_2^Tw_2)-E(w_1^TX_1)E(w_2^TX_2) Cov(w1TX1,w2TX2)=E(w1TX1X2Tw2)E(w1TX1)E(w2TX2)

这里 E ( w 1 T X 1 X 2 T w 2 ) E(w_1^TX_1X_2^Tw_2) E(w1TX1X2Tw2)是一个数字,其期望就是本身; E ( w 1 T X 1 ) , E ( w 2 T X 2 ) E(w_1^TX_1),E(w_2^TX_2) E(w1TX1),E(w2TX2)是向量,其期望是平均值,而我们认为 X 1 , X 2 X_1,X_2 X1,X2都已经做过中心化了,即 X 1 , X 2 X_1,X_2 X1,X2的行均值均为0,因此 E ( w 1 T X 1 ) , E ( w 2 T X 2 ) E(w_1^TX_1),E(w_2^TX_2) E(w1TX1),E(w2TX2)都为 0 0 0

方差是咋算的呢,以 w 1 T X 1 w_1^TX_1 w1TX1为例,同样是因为已经做过中心化了:
V a r ( w 1 T X 1 ) = 1 n − 1 w 1 T X 1 X 1 T w 1 Var(w_1^TX_1)=\frac{1}{n-1}w_1^TX_1X_1^Tw_1 Var(w1TX1)=n11w1TX1X1Tw1

此时优化目标变成了:
max ⁡ w 1 , w 2 w 1 T X 1 X 2 T w 2 w 1 T X 1 X 1 T w 1 n − 1 w 2 T X 2 X 2 T w 2 n − 1 \max_{w_1,w_2} \frac{w_1^TX_1X_2^Tw_2}{ \sqrt{\frac{w_1^TX_1X_1^Tw_1}{n-1} \frac{w_2^TX_2X_2^Tw_2}{n-1} }} w1,w2maxn1w1TX1X1Tw1n1w2TX2X2Tw2 w1TX1X2Tw2

注意到同一对 w 1 , w 2 w_1,w_2 w1,w2,如果同时扩大 c c c倍变成 c w 1 , c w 2 cw_1,cw_2 cw1,cw2,上式的值不变,因此为了求解方便,也为了上式有唯一解,CCA添加限制条件 w 1 T X 1 X 1 T w 1 = 1 , w 2 T X 2 X 2 T w 2 = 1 w_1^TX_1X_1^Tw_1=1,w_2^TX_2X_2^Tw_2=1 w1TX1X1Tw1=1,w2TX2X2Tw2=1。这样总的求解目标就等价于:
max ⁡ w 1 , w 2 w 1 T X 1 X 2 T w 2 s . t .   w 1 T X 1 X 1 T w 1 = 1 , w 2 T X 2 X 2 T w 2 = 1 \max_{w_1,w_2}w_1^TX_1X_2^Tw_2 \\ s.t.\ w_1^TX_1X_1^Tw_1=1,w_2^TX_2X_2^Tw_2=1 w1,w2maxw1TX1X2Tw2s.t. w1TX1X1Tw1=1,w2TX2X2Tw2=1

一般论文里列出来的式子就是这个式子。虽然曲折,但是每一步都有理有据。这是一个有约束的凸优化问题(为什么是凸函数呢?因为二阶导是0矩阵,是半正定的),可以用Lagrangian乘子法来解:
L ( w 1 , w 2 , λ 1 , λ 2 ) = w 1 T X 1 X 2 T w 2 + λ 1 ( 1 − w 1 T X 1 X 1 T w 1 ) + λ 2 ( 1 − w 2 T X 2 X 2 T w 2 ) L(w_1,w_2,\lambda_1,\lambda_2)=w_1^TX_1X_2^Tw_2+\lambda_1(1-w_1^TX_1X_1^Tw_1)+\lambda_2(1-w_2^TX_2X_2^Tw_2) L(w1,w2,λ1,λ2)=w1TX1X2Tw2+λ1(1w1TX1X1Tw1)+λ2(1w2TX2X2Tw2)

对四个变量求偏导并令结果为0:
∂ ∂ w 1 L ( w 1 , w 2 , λ 1 , λ 2 ) = X 1 X 2 T w 2 − 2 λ 1 X 1 X 1 T w 1 = 0 X 1 X 2 T w 2 = 2 λ 1 X 1 X 1 T w 1 ∂ ∂ w 2 L ( w 1 , w 2 , λ 1 , λ 2 ) = X 2 X 1 T w 1 − 2 λ 2 X 2 X 2 T w 2 = 0 X 2 X 1 T w 1 = 2 λ 2 X 2 X 2 T w 2 ∂ ∂ λ 1 L ( w 1 , w 2 , λ 1 , λ 2 ) = 1 − w 1 T X 1 X 1 T w 1 = 0 w 1 T X 1 X 1 T w 1 = 1 ∂ ∂ λ 2 L ( w 1 , w 2 , λ 1 , λ 2 ) = 1 − w 2 T X 2 X 2 T w 2 = 0 w 2 T X 2 X 2 T w 2 = 1 \frac{\partial }{\partial w_1}L(w_1,w_2,\lambda_1,\lambda_2)=X_1X_2^Tw_2-2\lambda_1 X_1X_1^Tw_1=0 \\ X_1X_2^Tw_2=2\lambda_1 X_1X_1^Tw_1 \\ \frac{\partial }{\partial w_2}L(w_1,w_2,\lambda_1,\lambda_2)=X_2X_1^Tw_1-2\lambda_2 X_2X_2^Tw_2=0 \\ X_2X_1^Tw_1=2\lambda_2 X_2X_2^Tw_2 \\ \frac{\partial }{\partial \lambda_1}L(w_1,w_2,\lambda_1,\lambda_2) =1-w_1^TX_1X_1^Tw_1=0\\ w_1^TX_1X_1^Tw_1=1 \\ \frac{\partial }{\partial \lambda_2}L(w_1,w_2,\lambda_1,\lambda_2)=1-w_2^TX_2X_2^Tw_2=0 \\ w_2^TX_2X_2^Tw_2=1 w1L(w1,w2,λ1,λ2)=X1X2Tw22λ1X1X1Tw1=0X1X2Tw2=2λ1X1X1Tw1w2L(w1,w2,λ1,λ2)=X2X1Tw12λ2X2X2Tw2=0X2X1Tw1=2λ2X2X2Tw2λ1L(w1,w2,λ1,λ2)=1w1TX1X1Tw1=0w1TX1X1Tw1=1λ2L(w1,w2,λ1,λ2)=1w2TX2X2Tw2=0w2TX2X2Tw2=1

有用的主要就这两个,剩下俩是约束条件:
X 1 X 2 T w 2 = 2 λ 1 X 1 X 1 T w 1 X 2 X 1 T w 1 = 2 λ 2 X 2 X 2 T w 2 X_1X_2^Tw_2=2\lambda_1 X_1X_1^Tw_1 \\ X_2X_1^Tw_1=2\lambda_2 X_2X_2^Tw_2 X1X2Tw2=2λ1X1X1Tw1X2X1Tw1=2λ2X2X2Tw2

做如下推导:
w 1 T X 1 X 2 T w 2 = 2 λ 1 w 1 T X 1 X 1 T w 1 = 2 λ 1 w 2 T X 2 X 1 T w 1 = 2 λ 2 w 2 T X 2 X 2 T w 2 = 2 λ 2 ∴ λ 1 T = λ 2 , λ 1 = λ 2 w_1^TX_1X_2^Tw_2=2\lambda_1 w_1^TX_1X_1^Tw_1=2\lambda_1 \\ w_2^T X_2X_1^Tw_1=2\lambda_2 w_2^T X_2X_2^Tw_2 =2\lambda_2 \\ \therefore \lambda_1^T=\lambda_2,\lambda_1=\lambda_2 w1TX1X2Tw2=2λ1w1TX1X1Tw1=2λ1w2TX2X1Tw1=2λ2w2TX2X2Tw2=2λ2λ1T=λ2,λ1=λ2

λ = λ 1 = λ 2 \lambda=\lambda_1=\lambda_2 λ=λ1=λ2
( X 1 X 1 T ) − 1 X 1 X 2 T w 2 = 2 λ w 1 ( X 2 X 2 T ) − 1 X 2 X 1 T w 1 = 2 λ w 2 (X_1X_1^T)^{-1}X_1X_2^Tw_2=2\lambda w_1 \\ (X_2X_2^T)^{-1}X_2X_1^Tw_1=2\lambda w_2 (X1X1T)1X1X2Tw2=2λw1(X2X2T)1X2X1Tw1=2λw2

进一步得到:
( X 1 X 1 T ) − 1 X 1 X 2 T ( X 2 X 2 T ) − 1 X 2 X 1 T w 1 = 4 λ 2 w 1 ( X 2 X 2 T ) − 1 X 2 X 1 T ( X 1 X 1 T ) − 1 X 1 X 2 T w 2 = 4 λ 2 w 2 (X_1X_1^T)^{-1}X_1X_2^T(X_2X_2^T)^{-1}X_2X_1^Tw_1=4\lambda^2 w_1 \\ (X_2X_2^T)^{-1}X_2X_1^T(X_1X_1^T)^{-1}X_1X_2^Tw_2=4\lambda^2 w_2 (X1X1T)1X1X2T(X2X2T)1X2X1Tw1=4λ2w1(X2X2T)1X2X1T(X1X1T)1X1X2Tw2=4λ2w2

这样就解出来 w 1 , w 2 w_1,w_2 w1,w2了,分别是那两个很复杂的矩阵的特征向量, λ \lambda λ是特征值。因为是个必要条件,而且前面已经得到 w 1 T X 1 X 2 T w 2 = 2 λ w_1^TX_1X_2^Tw_2=2\lambda w1TX1X2Tw2=2λ,因此只要选择最大的特征值对应的特征向量就能使得原式最大化。

d > 1 d>1 d>1的Lagrangian乘子法解

d > 1 d>1 d>1,问题变为:
max ⁡ W 1 , W 2 t r ( W 1 T X 1 X 2 T W 2 ) s . t .   W 1 T X 1 X 1 T W 1 = I , W 2 T X 2 X 2 T W 2 = 1 \max_{W_1,W_2} tr ( W_1^TX_1X_2^TW_2) \\ s.t.\ W_1^TX_1X_1^TW_1=I,W_2^TX_2X_2^TW_2=1 W1,W2maxtr(W1TX1X2TW2)s.t. W1TX1X1TW1=I,W2TX2X2TW2=1

即在各维度上的相关系数之和最大。列Lagrangian乘子法:
L ( W 1 , W 2 , λ 1 , λ 2 ) = t r ( W 1 T X 1 X 2 T W 2 ) + t r [ λ 1 ( I − W 1 T X 1 X 1 T W 1 ) ] + t r [ λ 2 ( I − W 2 T X 2 X 2 T W 2 ) ] L(W_1,W_2,\lambda_1,\lambda_2)= tr(W_1^TX_1X_2^TW_2)+tr[\lambda_1(I-W_1^TX_1X_1^TW_1)]+tr[\lambda_2(I-W_2^TX_2X_2^TW_2)] L(W1,W2,λ1,λ2)=tr(W1TX1X2TW2)+tr[λ1(IW1TX1X1TW1)]+tr[λ2(IW2TX2X2TW2)]

其中 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2都是对角矩阵。求导并令导数为0:
∂ ∂ W 1 L ( W 1 , W 2 , λ 1 , λ 2 ) = X 1 X 2 T W 2 − 2 X 1 X 1 T W 1 λ 1 = 0 X 1 X 2 T W 2 = 2 X 1 X 1 T W 1 λ 1 ∂ ∂ W 2 L ( W 1 , W 2 , λ 1 , λ 2 ) = X 2 X 1 T W 1 − 2 X 2 X 2 T W 2 λ 2 = 0 X 2 X 1 T W 1 = 2 X 2 X 2 T W 2 λ 2 \frac{\partial }{\partial W_1}L(W_1,W_2,\lambda_1,\lambda_2)=X_1X_2^TW_2-2X_1X_1^TW_1\lambda_1=0 \\ X_1X_2^TW_2=2X_1X_1^TW_1\lambda_1 \\ \frac{\partial }{\partial W_2}L(W_1,W_2,\lambda_1,\lambda_2) = X_2X_1^TW_1-2X_2X_2^TW_2\lambda_2 =0\\ X_2X_1^TW_1=2X_2X_2^TW_2\lambda_2 \\ W1L(W1,W2,λ1,λ2)=X1X2TW22X1X1TW1λ1=0X1X2TW2=2X1X1TW1λ1W2L(W1,W2,λ1,λ2)=X2X1TW12X2X2TW2λ2=0X2X1TW1=2X2X2TW2λ2

另外两个对 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2求导的我们就不写了,没必要。然后做转化,证明 λ 1 = λ 2 \lambda_1=\lambda_2 λ1=λ2
W 1 T X 1 X 2 T W 2 = 2 W 1 T X 1 X 1 T W 1 λ 1 = 2 λ 1 W 2 T X 2 X 1 T W 1 = 2 W 2 T X 2 X 2 T W 2 λ 2 = 2 λ 2 ∴ λ 1 T = λ 2 , λ 1 = λ 2 W_1^TX_1X_2^TW_2=2 W_1^TX_1X_1^TW_1\lambda_1=2\lambda_1 \\ W_2^TX_2X_1^TW_1=2W_2^TX_2X_2^TW_2\lambda_2 =2\lambda_2 \\ \therefore \lambda_1^T=\lambda_2,\lambda_1=\lambda_2 W1TX1X2TW2=2W1TX1X1TW1λ1=2λ1W2TX2X1TW1=2W2TX2X2TW2λ2=2λ2λ1T=λ2,λ1=λ2

λ = λ 1 = λ 2 \lambda=\lambda_1=\lambda_2 λ=λ1=λ2,然后重写一下:
X 1 X 2 T W 2 = 2 X 1 X 1 T W 1 λ X 2 X 1 T W 1 = 2 X 2 X 2 T W 2 λ X_1X_2^TW_2=2X_1X_1^TW_1\lambda\\ X_2X_1^TW_1=2X_2X_2^TW_2\lambda X1X2TW2=2X1X1TW1λX2X1TW1=2X2X2TW2λ

计算:
W 1 = 1 2 ( X 1 X 1 T ) − 1 ( X 1 X 2 T ) W 2 λ − 1 X 2 X 1 T ( X 1 X 1 T ) − 1 X 1 X 2 T W 2 = 4 ( X 2 X 2 T ) W 2 λ 2 ( X 2 X 2 T ) − 1 X 2 X 1 T ( X 1 X 1 T ) − 1 X 1 X 2 T W 2 = 4 W 2 λ 2 W_1=\frac{1}{2}(X_1X_1^T)^{-1}(X_1X_2^T)W_2\lambda^{-1} \\ X_2X_1^T(X_1X_1^T)^{-1}X_1X_2^TW_2=4(X_2X_2^T)W_2\lambda^2 \\ (X_2X_2^T)^{-1}X_2X_1^T(X_1X_1^T)^{-1}X_1X_2^TW_2=4W_2\lambda^2 W1=21(X1X1T)1(X1X2T)W2λ1X2X1T(X1X1T)1X1X2TW2=4(X2X2T)W2λ2(X2X2T)1X2X1T(X1X1T)1X1X2TW2=4W2λ2

同理:
( X 1 X 1 T ) − 1 X 1 X 2 T ( X 2 X 2 T ) − 1 X 2 X 1 T W 1 = 4 W 2 λ 2 (X_1X_1^T)^{-1}X_1X_2^T(X_2X_2^T)^{-1}X_2X_1^TW_1=4W_2 \lambda^2 (X1X1T)1X1X2T(X2X2T)1X2X1TW1=4W2λ2

这就告诉我们 W 1 , W 2 W_1,W_2 W1,W2的每一列都分别是由上面复杂的那两个式子的特征向量构成的,对应的特征值分布在 λ 2 \lambda^2 λ2的对角线上。因为这是个必要条件,现在把 W 1 T X 1 X 2 T W 2 = 2 λ W_1^TX_1X_2^TW_2=2\lambda W1TX1X2TW2=2λ代回求解目标:
t r ( W 1 T X 1 X 2 T W 2 ) = t r ( 2 λ ) tr ( W_1^TX_1X_2^TW_2)=tr(2\lambda) tr(W1TX1X2TW2)=tr(2λ)

为了使求解目标最大化,就要使 t r ( 2 λ ) tr(2\lambda) tr(2λ)最大,因此我们要选上面那两个复杂表示的最大的特征值对应的 d d d个特征向量构成 W 1 , W 2 W_1,W_2 W1,W2

总结

CCA是非常经典的方法,在数据分析、金融等领域应用广泛,CCA之于子空间学习相当于PCA之于降维。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值