- 博客(53)
- 收藏
- 关注
原创 Pytorch2.4.0自动安装cudnn9.1??? pip安装cudnn方法
Pytorch2.4.0使用官方安装方式安装的时候,会自动给我安装cudnn9.1,不论是conda安装还是pip安装,害得我出了一大堆问题,气死我了。我倒退到安装pytorch2.3.0才没出现自动安装cudnn的问题。以及,记录一个pip安装cudnn的方法,这也是官方推荐的。cuda其他版本同理。
2024-09-11 21:54:37 501 1
原创 3D Gaussian splatting 协方差矩阵 球谐函数 简单理解
3D Gaussian splatting 是一种图形和视觉处理技术,常用于体积渲染、点云渲染和其他应用中,以便对数据进行平滑或重建。在这个上下文中,高斯分布(或高斯“splat”)用于表示单个数据点(如一个点云中的点)对其周围空间的影响。椭圆(或在三维中则是椭球)的协方差矩阵用于定义这个高斯分布的形状和方向。
2024-02-28 14:36:03 3711
原创 mmtrack mmhuman3d error: could not build wheels for pycocotools, which is required to install pyp
我在安装mmhuman3d和mmtracking时,遇到报错:error: could not build wheels for pycocotools, which is required to install pyproject.toml-based projects。0.12.0, mmhuman3d是从github下载的最新版。最后我的解决方法为:安装pycocotools。
2024-01-19 23:14:11 472
原创 Ubuntu编译安装colmap遇到的几个问题以及解决
总体安装过程已经很明白了,写的人很多了,我就不赘述了,可以参考或者其他博客。我主要记录几个我遇到的问题以及解决方法。
2023-10-11 20:55:34 2669
原创 PyTorch模型转换为C++ Libtorch模型 Comparison exception: The values for attribute ‘shape‘ do not match
如果你的模型在前向传播过程中包含随机性,或者存在依赖于输入的控制流,那么使用torch.jit.script可能会是更好的选择。如果在两次前向传播中,模型的行为不一致(例如,计算的操作顺序改变,或者执行了不同的操作),那么torch.jit.trace记录下的计算图就可能不准确地反映模型的行为。这个过程假设模型的行为是确定的,也就是说,对于同样的输入,模型每次的运行结果和操作顺序都是相同的。当然这些问题是理论上存在的,如果你对模型有自信(比如我对我的模型有自信),或者只是想解决这个问题,那么就可以这么做。
2023-06-06 22:28:51 490
原创 动态TopicModel BERTopic 中文 长文本 SentenceTransformer BERT 均值特征向量 整体特征分词关键词
为了解决这些问题,学界提出了DTM、ETM、DETM、BERTopic等方法,其中是近年提出的热度很高的方法,它主要思路是寻找文本整体的BERT特征向量,然后对各文本特征在样本空间中做聚类,找到Topic,然后基于TF-IDF模型寻找每个Topic的关键词,最后寻找Topic在每个时间段的关键词表示。
2022-12-01 10:09:49 4835 2
原创 Deepface tensorflow GPU版本安装 Loaded runtime CuDNN library: 8.0.5 but source was compiled with: 8.1.0
真的非常无语Deepface(0.0.74版本)这个包在安装的时候会自动装上一个tensorflow,而不会检测我的虚拟环境下是否已经安装了tensorflow。原本我已经安装了tensorflow-gpu2.4.0,使用pip install deepface安装deepface的时候,它会自动给我装上一个tensorflow2.8.0,然后我在python里一调用deepface,就会导致各种错误,比如Loaded runtime CuDNN library: 8.0.5 but source wa
2022-03-28 01:49:27 2798
原创 hexo matery 相册 视频相册 相册加密 描述备注
hexo matery 相册 视频相册 相册加密 描述备注我的基本相册功能和相册加密功能是完全参考这篇matery相册功能和这篇matery相册加密功能实现的。有需要可以自取。在此基础上,我进一步想实现以下两个功能:视频相册功能,即相册既可以放图片也可以放视频;描述备注功能,即在合适的位置为图片或视频显示一行描述。我的实现效果可以看这里。我没有使用原文的等高功能,而用了瀑布流,所以看起来会有点不一样。思路本来对前端不太熟悉,我经过尝试发现原文里使用的fancybox插件可以播放视频并且和图
2021-09-04 13:57:24 843
原创 改变ubuntu终端显示语言(桌面系统中文,终端提示英文)
1. 打开终端vim .bashrc2. 在末尾添加export LANGUAGE=en_US export LANG=en_US.UTF-8 3. 激活环境source ~/.bashrc完成
2020-09-26 20:46:12 3737
原创 OSG实时纹理提取 离屏渲染 输出到OpenCV 反向渲染 OSG摄像头反转 OSG动态模型 摄像机实时渲染
代码效果做了一个OSG离屏渲染,即将OSG渲染结果的图片纹理提取出来,提取到OpenCV并转化为Mat类型来显示,便于后续操作,还是比较有价值的工作。其中模型是动态的模型。 OSG 离屏渲染 上面这个视频中(b站链接在这里),左边是调用viewer.frame()进行渲染时自动显示的图像,是反的,这个无所谓了,不是我们要用的东西;右边是我将纹理提取到OpenCV的Mat中然后用imsh
2020-09-15 20:13:31 2486
原创 OpenCV图像 OSG模型 vs2015 摄像头 图像 插入模型
本文参考了Github中的这个项目,基本就是把原作者的代码搬到了VS2015上,非常感谢原作者的工作。效果就是在摄像头采集到的图像中渲染模型然后显示,先看我的效果图:环境:win10, vs2015, opencv3.4.13, OSG3.6.5新建一个空白的Win32控制台应用程序,我的工程一共分为三个代码,如图:各个部分的代码如下:myhead.h自定义头文件,声明两个类#pragma once#include <windows.h>#include <osg/C
2020-08-02 22:19:29 433
原创 OpenCV3.4.13+OpenCV_contrib 双摄像头实时拼接 环境配置
如题,基于OpenCV3.4.13+VS2015做了个双摄像头实时拼接的代码,是一个大项目的一个baseline的一部分。下面先说配环境再给代码。环境配置关于OpenCV+VS的环境配置网上已经有很多了,因为这份代码用到了OpenCV_Contrib里面的一些东西,所以这里赘述一下,更详细的过程可以参考这篇博客。使用OpenCV_Contrib就得编译,编译就很麻烦,比配置还麻烦,因此我做了个资源集合,有需要的兄弟可以自取。假设你把我这个名为opencv的资源集合放在了$dir$下,$dir$的具体
2020-07-19 22:54:48 3557 7
原创 PyQt5 the application failed to start because no Qt platform could be initialized
今天因为换新电脑所以重装了PyQt5与PyQt5-tools,结果死活打不开Qt designer,报了一堆错,比如 the application failed to start because no Qt platform could be initialized, unable to patch \qt5core.dll: could not locate pattern “qt_prfxpath=”,在网上找了一堆解决方案都不好用,后来看了下我装的版本是5.15的,可能是版本的问题,我就重装了PyQ
2020-07-12 14:33:13 1183
原创 PyQT5 QtWidgets 设置单元格不可编辑/可编辑 恢复单元格默认设置
当时写这个地方的时候需要在一定条件下把QtWidgets表格的一部分单元格设为不可编辑,在一定条件下又把它们设为可编辑,给我恶心坏了,PyQT的QtWidgets真是反人类的设计。需要先定义一个有某种特征的QTableWidgetItem,然后将其放到需要修改特征的QtWidgets的单元格上去,要设定QTableWidgetItem的特征还必须修改ItemIsEnabled项。已经忘了当时是怎么写出来的了,查了文档也查了许多博客,回顾记录一下。假设已经定义好了ui.tableWidget和i,j,若
2020-07-05 00:59:19 10737 9
原创 python docx 表格样式修改 Package not found at ‘*.docx‘; “no style with name ‘Table Grid‘“
做一个小demo的时候遇到了几个和docx有关的问题,简记如下。使用python包docx进行doc文件编写的时候,如果想插入一个style为’Table Grid’的表格,那么就先新建一个空文档’test.docx’,然后在同目录的test.py下写如下代码并运行:import docx doc = docx.Document('test.docx') table=doc.add_table(rows=3, cols=4)table.style = doc.styles["Table Gr
2020-07-05 00:07:51 2405
原创 VB 显示当前时间 24小时制
遇到了一个VB显示时间的问题,需要用是24小时制的当前时间,用法记录如下:Dim dateTimeNow As StringdateTimeNow = Format(Now(), "yyyy-MM-dd-HH")比如现在是2020年7月4日19时,得到的dateTimeNow 就是:2020-07-04-19网上许多资料说用"yyyy-mm-dd-hh",小写的mm和hh,但是我这么用的话得到的是:2020-10-04-07得到的月份很奇怪,小时显示的是12小时制。咱也不知道是啥问题,咱
2020-07-04 19:25:18 2902
原创 windows anaconda 虚拟环境 与 系统变量冲突 pyinstaller 打包软件过大
windows一般装anaconda的时候会设置系统变量,可以方便在Powershell里面使用conda,python等命令。然而今天坑就坑在这里了。本来想用pyinstaller打包软件来着,我anaconda里东西太多,一大包软件就好几百兆,没办法,新建虚拟环境吧。我用conda、virtual、pipenv都试过了,去新建虚拟环境,然后在虚拟环境里装了一些东西,结果我大包的时候仍然是一大堆。后来我发现新建的虚拟环境里即使不装pyinstaller也能用,为什么呢?因为我的系统环境里安装了pyin
2020-05-18 22:16:22 591 2
原创 矩阵运算中的trick
本贴记录一些学习中遇到的矩阵运算的小trick.∥A−B∥F2=tr(AAT)+tr(BBT)−2tr(ABT)\|A-B\|_F^2=tr(AA^T)+tr(BB^T)-2tr(AB^T)∥A−B∥F2=tr(AAT)+tr(BBT)−2tr(ABT)
2020-03-08 16:24:14 442
原创 多视角子空间学习系列之 MCCA (Multi-view CCA) 多视角CCA Horst算法
优化目标前面已经讲了典型相关分析CCA,并且提到,CCA是一种双视角的方法,只能处理视角数为2的情况。为了将CCA应用于更多视角,一些研究人员提出了MCCA(Multi-view CCA),即多视角CCA,将CCA直观地扩展到多视角版本。给定mmm个视角X1,X2,⋯ ,Xm{X_1,X_2,\cdots,X_m}X1,X2,⋯,Xm,其中第iii个视角Xi∈RDi×nX_i\in \ma...
2020-02-24 18:28:38 4632
原创 多视角子空间学习系列之 CCA 典型相关分析
多视角学习与子空间学习多视角学习(Multi-view learning)是陶大成提出的一个研究方向。我们都知道,在机器学习中样本可以用不同的特征(如图片可以用LBP、SIFT等特征)来表示,或者从不同的角度进行观察(如从前后左右观察一个对象),甚至是采用不同的传感器来观测(如RGB摄像头,Depth摄像头),这些不同的观测手段、角度或特征在多视角学习中称为“视角”。多视角学习通过对不同的视角进...
2020-02-20 15:38:37 2440
原创 降维系列之 AutoEncoder 自动编码器
AutoEncoder简单很多,简写一下。主要分两个部分,Encoder和Decoder,Encoder是降维的过程,Decoder是将降维的结果升维,AutoEncoder希望升维的结果与原始数据尽可能一致,二者共同构成一个前馈的网络,训练完后的中间结果就是降维结果。Encoder和Decoder的构成可以是线性的,也可以是非线性的,可以自由设计。看代码更明白一些:class AutoEn...
2020-02-19 15:32:02 5988 2
原创 降维系列之 SNE与t-SNE
t-SNE是一种经典的降维和可视化方法,是基于SNE(Stochastic Neighbor Embedding,随机近邻嵌入)做的,要了解t-SNE就要先了解SNE。本文同样既是总结,又是读论文笔记。SNE 随机近邻嵌入SNE的的第一步是用条件概率来表示高维空间中样本点之间用欧氏距离度量的相似度。假设样本选择其近邻的概率与与以自身为中心的高斯分布的概率密度成正比,SNE用pj∣ip_{j|i...
2020-02-19 13:20:14 3695 1
原创 降维系列之 MDS多维缩放 与 ISOMAP 等度量映射
主要思路MDS(Multi-dimensional Scaling)是一种经典的降维方法。本文主要参考这个PPT。给定样本集X=[x1,⋯ ,xn]∈RD×nX=[x_1,\cdots,x_n]\in \mathbb{R}^{D\times n}X=[x1,⋯,xn]∈RD×n,其中nnn表示样本数量,DDD表示维度,每一列表示一个样本,以及一种满足如下条件的度量方式dabd_{ab}da...
2020-02-16 13:19:58 642
原创 降维系列之 LTSA 局部切空间排列
前面写的PCA,LE,LDA,LLE都是以前就比较熟悉的东西,从这篇开始写的都是之前不熟悉的甚至都不知道名字的算法,然而都还很经典。疫情期间在家里看看原文,学习学习,既是算法总结又是读论文笔记。这篇来写LTSA局部切空间排列。本篇符号尽量与原文保持一致,与前面几篇有所不同。主要思路LTSA(Local Tangent Space Alignment)的基本思路是用样本点的近邻区域的切空间来表示...
2020-02-14 15:43:53 7664 8
原创 降维系列之 LLE 局部线性嵌入
基本思路LLE(Local Linear Embedding)局部线性嵌入的思路也是局部保持与线性降维,是一种经典的降维与流形学习算法。给定X∈RD×nX\in \mathbb{R}^{D\times n}X∈RD×n表示原始的nnn个样本,每列一个样本,欲求XXX中这些样本降维后的结果Y∈Rd×n,d<DY\in \mathbb{R}^{d\times n},d<DY∈Rd×n,d...
2020-02-10 20:13:59 642
原创 降维系列之 LDA 线性判别分析
优化目标LDA是一种经典的线性降维方法。给定原始样本集合X∈RD×nX\in \mathbb{R}^{D\times n}X∈RD×n,目标是求降维后的结果Y∈Rd×n,d<DY\in \mathbb{R}^{d\times n}, d<DY∈Rd×n,d<D,LDA希望寻找一个投影矩阵W∈RD×dW\in \mathbb{R}^{D\times d}W∈RD×d满足Y=WTX...
2020-02-09 19:14:04 551
原创 有关深度估计的几篇文章的阅读笔记
一、A generalized Depth Eestimation Algorithm with a Single Image 一种基于单一图像的广义深度估计算法(TPAMI,1992)1. 边读边记深度估计对于场景估计、物体识别等计算机视觉方向有重要作用;严格来说,深度是指物体表面到薄凸透镜的第一主平面的距离;实体视觉(stereopsis)方法是比较流行的方法,该方法基于测量双目视差(...
2020-02-09 18:47:06 771 4
原创 降维系列之 LE 拉普拉斯特征映射
优化目标接上篇PCA继续写降维。LE也是一种经典的降维方法和流形学习方法。给定样本集X∈RD×nX\in \mathbb{R}^{D\times n}X∈RD×n,DDD是样本原始维度,nnn是样本数量,每一列表示一个样本;求解目标是Y∈Rd×nY\in \mathbb{R}^{d\times n}Y∈Rd×n,ddd为目标维度,每一列表示一个样本。与PCA不同的是,LE是一种非线性的方法,它...
2020-02-08 12:24:56 2799 4
原创 降维系列之 PCA 主成分分析
写这个系列主要目的是巩固和总结数学知识,也是希望以后查阅起来方便。降维方法是研究生期间我所在的组研究过很久的一套内容,我虽然没有搞这个方向,但是也受了很多熏陶。研一刚接触的时候老师讲啊讲,其实也没讲很细,我基本只做了笔记,啥都没懂,数学基础欠缺太多。后来慢慢一一补齐,总算是大概能理解下来,但还是有些许地方心中存疑。到现在熟悉了这些东西的基本思路,也看了很多论文和数学,就比较熟练了。一切就从组内的入...
2020-02-07 14:42:51 892 3
原创 ADMM算法(交替方向乘子法)
有了前面标准Lagrangian乘子法与对偶上升法和增广Lagrangian法的基础,理解ADMM就容易了很多。本文主要来自张贤达《矩阵分析与优化(第二版)》4.7.4节。ADMM算法ADMM认为,在统计学与机器学习中,经常会遇到大尺度的等式约束优化问题,即x∈Rnx\in \mathbb{R}^nx∈Rn的维数nnn很大。如果xxx可以分解为几个子向量,即x=(x1,⋯ ,xr)x=(x_1...
2020-02-05 13:57:58 17563 6
原创 罚函数与增广Lagrangian乘子法
罚函数罚函数法是一种广泛采用的约束优化方法,有时也称为惩罚,其基本原理是通过采用罚函数或障碍函数,将约束条件整合进优化目标中去。考虑约束优化问题:minf(x)s.t. fi(x)≥0,i=1,⋯ ,m;hj(x)=0,j=1,⋯ ,q(1)\min f(x)\\s.t.\ f_i(x)\ge0,i=1,\cdots,m;h_j(x)=0,j=1,\cdots,q \tag{1...
2020-02-04 18:26:28 7072 2
原创 Lagrangian乘子法与对偶上升法(Dual Ascent)
考虑等式约束的凸优化问题:minf(x) s.t. Ax=b(1)\min f(x) \ s.t.\ Ax=b \tag{1}minf(x) s.t. Ax=b(1)其中向量x∈Rnx\in\mathbb{R}^nx∈Rn,矩阵A∈Rm×nA\in \mathbb{R}^{m\times n}A∈Rm×n,函数f(x):Rn→Rf(x):\math...
2020-02-04 12:43:51 4779 4
原创 Lagrangian乘子法 对偶问题 KKT条件 Slater条件 与凸优化
现有标准形式的约束优化问题如下:minxf(x)s.t. fi(x)≤0,i=1,⋯ ,m;Ax=b,\min_{x}f(x)\\s.t. \ f_i(x)\le0,i=1,\cdots,m;Ax=b,xminf(x)s.t. fi(x)≤0,i=1,⋯,m;Ax=b,或写作:minxf(x)s.t. fi(x)≤0,i=1,⋯ ,mhi(x)=0...
2020-02-02 20:32:00 1701 1
原创 凸函数定义与判定条件 凸优化方法总论
凸集与凸函数首先是凸集的定义。一个集合S∈RnS\in \mathbb{R}^nS∈Rn称为凸集(Rn\mathbb{R}^nRn表示nnn维实向量空间),如果对于任意两个点a,b∈Sa,b\in Sa,b∈S,连接它们的线段也在集合SSS内,如下图:任意多个凸集的交集仍为凸集。函数f:Rn→Rf:\mathbb{R}^n→\mathbb{R}f:Rn→R(由nnn维实向量到实数的映射函数...
2020-02-02 14:28:46 6648
原创 Hessian矩阵及其辨识 实变函数 极值 无约束梯度分析
Hessian矩阵及其辨识 实变函数 极值 无约束梯度分析本文主要介绍Hessian矩阵的定义以及与实变函数无约束极值的关系,主要内容来自张贤达《矩阵分析与优化(第二版)》第三章和第四章的相关内容。Hessian矩阵的定义Hessian矩阵可以理解为矩阵的二阶偏导。实值标量函数f(x)f(x)f(x)在列向量x∈Rm×1x\in\mathbb{R}^{m\times 1}x∈Rm×1处的H...
2020-02-01 14:17:34 895
原创 Jacobian矩阵 梯度矩阵 矩阵偏导与微分 例子与常见公式
机器学习中的矩阵求导理解与常见公式小结矩阵求导是机器学习中常见的运算方法,研究对象包括标量,向量和矩阵,求导分为标量对向量、矩阵求导,向量对标量、向量、矩阵求导,矩阵对标量、向量、矩阵求导。根据个人理解和经验,机器学习中的优化目标一般是一个由向量或矩阵运算得到的标量,因此应该重点关注标量对向量和矩阵的求导。定义标量对标量的导数是用微分定义的,标量fff对标量xxx的导数f′(x)f'(x)...
2020-01-31 12:47:26 8843
原创 OpenCV3.4.1 vs2015 自定义过程的图片拼接
OpenCV3.4.1 vs2015 自定义过程的图片拼接实验环境:win10,vs2015,OpenCV3.4.1。环境配置点击这里可以看到很好的一个参考。OpenCV有自带的图片拼接函数,样例在opencv3.4.1\opencv\sources\samples\cpp\stitching.cpp,这里实现的是逐步提取特征、图片配对、拼接的图片拼接代码,是基于opencv3.4.1\op...
2019-12-30 20:05:41 795
原创 读论文看到的好的英文词句表达
左思右想还是觉得有必要专开一贴长期来写比较好。一、专业表达词汇field-of-view(FOV) 视域head-mounted displays(HMDs) 头戴式设备high latency 高延迟二、形容词类consumer-facing 面向消费者的immersive 沉浸式的tremendous 巨大的,惊人的ultra- 极端的,过度的(前缀)dynamically...
2019-11-07 15:14:28 449
原创 动态链接库dll生成与调用 加密 电脑唯一识别 windows下多个cmd命令输出结果的同时获取 本地时间的处理
今天做了一个动态链接库生成和调用的工作,里面还涉及了自定义函数获取数组,获取电脑的唯一识别信息,windows从命令行获取系统的输出,本地时间的获取和处理,一次获取多个命令的输出等,加密等操作。记录在这里。生成动态链接库dll生成的话我用的是vs2015,新建一个空的win32控制台应用程序,注意“应用程序类型”选择DLL,然后在“头文件”下新建dl1.h文件,主要是声明这个库里的函数。写了如...
2019-10-12 20:16:24 712
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人