spark-32.spark机器学习_5_协同过滤算法

协同过滤算法主要用于推荐系统,推荐系统是信息过载所采用的措施,面对海量的数据信息,,从中快速推荐出符合用户特点的物品。一些人的“选择恐惧症”、没有明确需求的人。
解决如何从大量信息中找到自己感兴趣的信息。
解决如何让自己生产的信息脱颖而出,受到大众的喜爱。

1.协同过滤要解决的问题

根据用户已经评分物品,补充用户给物品评分表的空格的评分,供推荐系统使用。

2.要解决的问题

有了相似度的比较,那么比较多少个用户或者物品为好呢?一般会有基于固定大小的邻域以及基于阈值的邻域。具体的数值一般是通过对模型的评比分数进行调整优化。

3.基于用户的CF

for每个其他用户w
  计算用户u和用户w的相似度s
  按相似度排序后,将位置靠前的用户作为邻域n
for (n中用户有偏好,而u中用户无偏好的)每个物品i
  for (n中用户对i有偏好的)每个其他用户v
    计算用户u和用户v的相似度s
    按权重s将v对i的偏好加入平均值

4.基于物品的CF

计算物品相似度

for每个物品i
  for每个其他物品j
for对于i和j均有偏好的每个用户u
  将物品对(i与j)间的偏好值差异加入u的偏好

给用户推荐物品

for用户u未表达过偏好的每个物品i
  for用户u表达过偏好的每个物品j
	找到j与i之间的平均偏好值差异
	添加该差异到u对j偏好值
	添加其至平均值
return 值最高的物品(按平均差异排序)

5.基于LFM思想的矩阵分解-ALS

LFM主要应用在两个方面:一个是用户评分预测,一个是物品隐类Top-N热门排行。
假设用户物品评分矩阵为R,现在又u个用户,i个物品,我们想要发现F个隐类,我们的任务就是找到两个矩阵U和V,使这两个矩阵的乘积近似等于R,即将用户物品评分矩阵R分解成两个低维矩阵相乘。

6.代码实现

  1. 创建sparkContext 【spark中对于推荐目前只提供了ALS模型、Word2Wec模型】。
  2. 载入训练数据,模型要求数据为RDD[Rating]结构。
  3. 训练模型。
  4. 通过预测的方法,能够获取某个用户对某个商品的喜爱程度。
  5. 关闭sparkContext。
package com.dengdan

import org.apache.spark.mllib.recommendation.{ALS, MatrixFactorizationModel, Rating}
import org.apache.spark.{SparkConf, SparkContext}

/**
 * 基于LFM模型的推荐算法ALS
 */
object Recommendation {
  def main(args: Array[String]): Unit = {
    val sc = new SparkContext(new SparkConf().setMaster("local[*]").setAppName("CollaborativeFiltering"))
    val path = "D:\\idea_workspace2020\\spark\\sparkMLib\\collaborative_filtering\\src\\main\\resources\\test.data"
    val data = sc.textFile(path)
    val ratings = data.map(_.split(",") match { case Array(user, item, rate) =>
      Rating(user.toInt, item.toInt, rate.toDouble)
    })

    //训练模型
    val rank = 50
    val numIterations = 10
    val model = ALS.train(ratings, rank, numIterations, 0.01)

    //准备用户数据
    val usersProducts = ratings.map { case Rating(user, product, rate) => (user, product) }

    //生成推荐结果
    val predictions = model.predict(usersProducts).map { case Rating(user, product, rate) => ((user, product), rate) }

    //对比结果
    val ratesAndPreds = ratings.map { case Rating(user, product, rate) => ((user, product), rate) }.join(predictions)

    //生成均方误差
    val MSE = ratesAndPreds.map { case ((user, product), (r1, r2)) =>
      println(s"【用户】:${user} 【物品】:${product} 【真实值】:${r1} 【预测值】:${r2}")
      val err = r1 - r2
      err * err
    }.mean()
    println(s"预测的均方误差=${MSE}")

    val modelPath = "target/tmp/Recommendation_ALS"
    //保存模型
    model.save(sc, modelPath)
    //重新加载模型
    val sameModel = MatrixFactorizationModel.load(sc, modelPath)

    sc.stop()
  }
}

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
本套大数据热门技术Spark+机器学习+贝叶斯算法系列课程,历经5年沉淀,调研企业上百家,通过上万学员汇总,保留较为完整的知识体系的同时,让每个模块看起来小而精,碎而不散。在本课程中基于大量案例实战,深度剖析和讲解Spark2.4原理和新特性,且会包含完全从企业真实业务需求中抽取出的案例实战。内容涵盖Spark核心编程、Spark SQL和Spark Streaming、Spark内核以及源码剖析、推荐系统、Kafka消费机制、Spark机器学习、朴素贝叶斯算法、企业级实战案例等。通过理论和实际的紧密结合,可以使学员对大数据Spark技术栈有充分的认识和理解,在项目实战中对Spark和流式处理应用的场景、以及大数据开发有更深刻的认识;并且通过对流处理原理的学习和与批处理架构的对比,可以对大数据处理架构有更全面的了解,为日后成长为架构师打下基础。本套教程可以让学员熟练掌握Spark技术栈,提升自己的职场竞争力,实现更好的升职或者跳槽,或者从J2EE等传统软件开发工程师转型为Spark大数据开发工程师,或是对于正在从事Hadoop大数据开发的朋友可以拓宽自己的技术能力栈,提升自己的价值。Spark应用场景Yahoo将Spark用在Audience Expansion中的应用,进行点击预测和即席查询等。淘宝技术团队使用了Spark来解决多次迭代的机器学习算法、高计算复杂度的算法等。应用于内容推荐、社区发现等。腾讯大数据精准推荐借助Spark快速迭代的优势,实现了在“数据实时采集、算法实时训练、系统实时预测”的全流程实时并行高维算法,最终成功应用于广点通pCTR投放系统上。优酷土豆将Spark应用于视频推荐(图计算)、广告业务,主要实现机器学习、图计算等迭代计算。本套大数据热门技术Spark+机器学习+贝叶斯算法共计13季,本套为第13季。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值