目标检测论文阅读
OopsZero
这个作者很懒,什么都没留下…
展开
-
基于RGB-D数据的人体检测
摘要: 提出一种新的基于RGB-D数据的人体检测方法,其灵感来自HOG(the Histogram of Oriented Gradients),设计了一个稳定的基于稠密深度数据的人体检测方法,称之为HOD(Histogram of Oriented Depths)。HOD对局部深度变化的方向进行编码,并且依靠的是一个预知深度信息的尺度空间搜索,该搜索使检测过程获得3倍的加速。随...翻译 2019-02-27 15:23:57 · 2323 阅读 · 2 评论 -
《Bag of Freebies for Training Object Detection Neural Networks》论文理解
摘要:目标检测训练与图像分类模型的研究相比,相对缺少普遍性。由于网络结构和优化目标明显更加复杂,因此针对某些检测算法而不是其他检测算法专门设计了各种训练策略和 pipelines。在这项工作中,我们探索了有助于将最先进的目标检测模型的性能提升到一个新水平而不牺牲推理(inference)速度的通用方法。我们的实验表明,这些训练秘籍(freebies)可以在精度上增加5%,因此每个人都应该考虑在...翻译 2019-02-23 17:51:11 · 552 阅读 · 0 评论 -
Object Detection based on Region Decomposition and Assembly论文理解
研究动机目前主流的目标检测算法分为 1 stage 和 2 stage 的,而 2 stage 的目标检测方法以 Faster-RCNN 为代表是需要 RPN(Region Proposals Network)生成 RoI(Region of Interests,感兴趣区域)的,文章认为正是因为被遮挡了的或者不精确的 Region Proposals 导致目标检测算法的不准确。作者的想...转载 2019-03-05 16:26:53 · 1300 阅读 · 0 评论 -
论文阅读:Gabor Convolutional Networks
论文:Gabor Convolutional Networks下载地址:https://arxiv.org/pdf/1705.01450.pdf摘要传统滤波器设计具有很好的操作性(参数可调),如Gabor滤波器,其能使得特征具有处理空间变换的能力。然而,在目前流行的深度卷积神经网络(DCNNS)中,这种优良的性能还没有得到很好的研究。本文提出了一种新的深度模型,称为Gabor卷积网络(...翻译 2019-03-25 21:52:12 · 6856 阅读 · 5 评论 -
信息论中的几个相似性度量的方法
Lipschitz(利普希茨)连续定义:有函数f(x),如果存在一个常量K,使得对f(x)定义域上(可为实数也可以为复数)的任意两个值满足如下条件:|f(x1)−f(x2)|≤|x1−x2|∗K那么称函数f(x)满足Lipschitz连续条件,并称K为f(x)的Lipschitz常数。Lipschitz连续比一致连续要强。它限制了函数的局部变动幅度不能超过某常量。Wasser...转载 2019-04-09 22:10:37 · 1192 阅读 · 0 评论