机器学习
OopsZero
这个作者很懒,什么都没留下…
展开
-
基于密度的聚类算法(Clustering by fast search and find of density peaks)
最近看到一种非常巧妙的聚类算法,想着找代码跑跑,理解理解算法的原理。 聚类算法比较 1、CFSFDP代码 1.1 结果 2、K-means代码 2.1 结果 3、DBSCAN代码 3.1 结果 4、讨论 参考: 1、https://www.cnblogs.com/hdu-2010/p/4621258.html 2、https://bl...原创 2019-03-15 19:52:33 · 3260 阅读 · 1 评论 -
初学机器学习:直观解读KL散度的数学概念
基础概念 首先让我们确立一些基本规则。我们将会定义一些我们需要了解的概念。 分布(distribution) 分布可能指代不同的东西,比如数据分布或概率分布。我们这里所涉及的是概率分布。假设你在一张纸上画了两根轴(即 X 和 Y),我可以将一个分布想成是落在这两根轴之间的一条线。其中 X 表示你有兴趣获取概率的不同值。Y 表示观察 X 轴上的值时所得到的概率。即 y=p(x)。下图即是某个分...转载 2019-04-09 09:59:35 · 258 阅读 · 0 评论 -
GBDT的理解
下面我们先了解什么是提升树 都知道,在每个基分类器(CART树)生成的过程,有一个最小化损失函数的步骤,那么对于回归树来说,当我们使用的损失函数是平方损失误差的话,来看看是什么情况: (注意图片上的标注红字) 看了红字,我觉得大家应该能理解有些书上说的残差,拟合什么的了。 搞懂了提升树,那么来看看什么是GBDT,它也是提升树,只不过是用梯度求解的方法,那么当采用平方损失作为损...转载 2019-09-07 19:42:33 · 494 阅读 · 0 评论