hdu1507(二分匹配)

大意是求最多能有多少组白块,相邻的两块为一组,所以这道题目的两个集合可以设定为横纵坐标之和为奇数的集合和横纵坐标之和为偶数的集合,然后建图,一个点只能与之上下左右的点相连,所以只需考虑这四个方向就可以了。

这里写图片描述“`

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;
int n, m, k;
int d[4][2] = {-1,0,1,0,0,-1,0,1};
void hungarian();
bool dfs(int u);
bool judge(int xx, int yy);
int matching[13030], used[13030], plan[13030];
vector <int> g[13030];
int main()
{
    while(scanf("%d%d", &n, &m), n != 0 && m != 0){
    scanf("%d", &k);
    memset(g, 0, sizeof(g));
    memset(plan, 0,  sizeof(plan));
    for(int i = 0; i < k; i++)
    {
        int x, y;
        scanf("%d%d", &x, &y);
        plan[(x - 1) * m + y] = 1;
    }
    for(int i = 1; i <= n; i ++)
    {
        for(int j = 1; j <= m; j++)
        {
            if(!plan[(i - 1) * m + j] && (i + j) % 2)
            {
                for(int q = 0; q < 4; q++)
                {
                    int xx = i + d[q][0];
                    int yy = j + d[q][1];
                    if(judge(xx, yy))
                    {
                        g[(i - 1) * m + j].push_back((xx - 1) * m + yy);
                    }

                }
            }
        }
    }
    hungarian();
    }
}
bool judge(int xx, int yy)
{
    if(plan[(xx - 1) * m + yy] == 0 && xx > 0 && xx <= n && yy > 0 && yy <= m)
        return true;
    return false;
}
void hungarian()
{
    int ans = 0;
    memset(matching, -1, sizeof(matching));
    for(int i = 1; i <= n*m; i++)
    {
        memset(used, 0, sizeof(used));
        if(dfs(i))
            ans++;
    }
    printf("%d\n", ans);
    for(int i= 1; i <= n * m; i++)
    {
        int x1, x2, y1, y2;
        if(matching[i] != -1)
        {
            if(!(matching[i] % m))
            {
                x1 = matching[i] / m;
                y1 = m;
            }
            else
            {
                x1 = matching[i] / m + 1;
                y1 = matching[i] % m;
            }
            if(!(i % m))
            {
                x2 = i / m;
                y2 = m;
            }
            else
            {
                x2 = i / m + 1;
                y2 = i % m;
            }
            printf("(%d,%d)--(%d,%d)\n",x1,y1,x2,y2);
        }
    }
}
bool dfs(int u)
{
    for(int i = 0; i < g[u].size(); i++)
    {
        int t = g[u][i];
        if(!used[t])
        {
            used[t] = 1;
            if(matching[t] == -1 || dfs(matching[t]))
            {
                matching[t] = u;
                return true;
            }
        }
    }
    return false;
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_30727593/article/details/51559372
个人分类: 随便玩玩
上一篇hdu2648 shopping(map应用)
下一篇快速幂&amp;矩阵快速幂
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭