题目
【样例输入1】
4
1 3 2 0
【样例输出1】
2
【样例输入2】
7
1 3 3 2 1 2 3
【样例输出2】
0
【样例输入3】
2
2 2
【样例输出3】
1
【样例说明】
在第一个样例中,阿迪在第一天编写程序,在第三天做运动,因此他仅有两天可以休息。
在第二个样例中,阿迪可以在第1、3、5、7天编写程序,其他天做运动,因此没有哪天休息。
在第三个样例中,阿迪可以在第1天或第2天做运动,但不能连续两天运动,因此他有一天休息。
思路
淦 动态规划的特点我觉得是代码少。。不加注释30行不到但想要想好久。
利用二维dp数组来记录第i天干j事儿休息的最少天数。那么不管今天是0、1、2、3都有一个状态转移方程是
dp[i][0]=min(dp[i-1][0],min(dp[i-1][1],dp[i-1][2]))+1
今天可以懒一点不去多休息一天,那就得找出前一天三种情况休息的最小值+1(毕竟今天休息了得+1)
当今天选择coding的时候那么day可以是1或3,那么昨天一定是运动or休息了
dp[i][1]=min(dp[i-1][0],dp[i-1][2])
当今天选择运动的时候那么day可以是3或2,那么昨天一定是coding or休息了
dp[i][2]=min(dp[i-1][0],dp[i-1][1])
这个思路比我之前的思路好太多太多,完美地利用了动态规划打表中几个状态之间的联系。
AC代码
#include <bits/stdc++.h>
using namespace std;
//采用动态规划 对于第i天可以有三种选择都列举出来
int dp[110][3];//dp[i][j]表示第i天做j的话休息的最小天数
//这里的0 1 2跟天数是不一样的0表示休息 1表示coding 2表示写代码
int main() {
for (int i = 0; i < 110; ++i) {
for (int j = 0; j < 3; ++j) {
dp[i][j] = 5000;//最小值问题把dp的初始值设置大一点儿
}
}
dp[0][1] = dp[0][1] = dp[0][2] = 0; //边界条件 第0天的三种情况均为0
int n;
cin >> n;
int day;
for (int i = 1; i <= n; ++i) {
cin >> day;
//如果今天搞累了想休息 那么昨天啥事都能做 但是今天注意+1
dp[i][0] = min(dp[i - 1][0], min(dp[i - 1][1], dp[i - 1][2])) + 1;
if (day == 1 || day == 3) { //今天写代码 那么今天的dp[i][1]就不能加1了 等于之前的dp[i-1][0],dp[i-1][2]的最小值
dp[i][1] = min(dp[i - 1][0], dp[i - 1][2]);
}
//注意这个地方不能使用else if 因为如果x==3的话我可以选择今天coding昨天运动 也可以昨天coding今天运动
if (day == 2 || day == 3) { //今天运动
dp[i][2] = min(dp[i - 1][0], dp[i - 1][1]);
}
}
cout << min(dp[n][0], min(dp[n][1], dp[n][2]));
}