Leetcode: 最小路径和(Minimum Path Sum)

17 篇文章 0 订阅
17 篇文章 0 订阅

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example:

Input:
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.

给定一个m×n的网格,其中填充了非负数,请找到一条从左上到右下的路径,该路径将沿其路径的所有数字的总和最小化。

注意:您只能在任何时间点向下或向右移动。


依然是动态规划的问题,使用贪心算法就落入了出题者的陷阱。

class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        // check size
        int m = grid.size();
        if(!m)
            return 0;
        int n = grid.at(0).size();
        if(!n)
            return 0;
        // initailize 
        vector<int> buffer(n, 0);
        vector<vector<int>> result(m, buffer);
        // calculate
        for(int i = 0; i < m; i++){
            for(int j = 0; j < n; j++){
                if(i > 0 && j > 0){
                    result.at(i).at(j) = grid.at(i).at(j) + min(result.at(i-1).at(j), result.at(i).at(j-1));
                }
                else if(i > 0){
                    result.at(i).at(j) = grid.at(i).at(j) + result.at(i-1).at(j);
                }
                else if(j > 0){
                    result.at(i).at(j) = grid.at(i).at(j) + result.at(i).at(j-1);
                }
                else{
                    result.at(i).at(j) = grid.at(i).at(j);
                }
            }
        }
        return result.at(m-1).at(n-1);
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值