python散点图及相关系数矩阵计算和相关性验证

本文通过Python的Matplotlib和Pandas库实现数据的散点图可视化,并计算数据集的相关系数矩阵,深入探讨变量之间的相关性。使用自定义方法连接数据库,获取教学行为数据,进行pearson相关性分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python散点图及相关系数矩阵计算

# -*- coding:utf-8 -*-
# __author__ = "LQ"
import matplotlib.pyplot as plt
import pandas as pd
import scipy.stats as stats
#自定义方法调用,上一篇有该方法
from DataAnalysis.TeachingModel.dbc import dbcConnect

def main(sql):
    df = dbcConnect.selectDf(sql)
    print(df)
    # pearson相关系数矩阵
    corr = df.corr()
    print(corr)
    #计算某一个元素相关
    print(df.corr()[u'avg_getscore'])
    # 输出结果第一个值为pearsonr相关系数,
    # 第二个为p-value,所以这里Guba列和Value值是显著相关的
     pearsonr = stats.pearsonr(df['avg_total_afterrequire_num'], df['avg_getscore'])
     print(pearsonr)

    # 散点图矩阵
    pd.plotting.scatter_matrix(df, figsize=(8, 8),
                               c='k',
                               marker='+',
                               diagonal='hist',
                               alpha=0.8,
                               range_padding=0.1)
    plt.show()


if __name__ == '__main__':
    sql = '''SELECT
    avg_total_afterrequire_num,
    avg_total_beforerequire_num,
    avg_total_homework_num,
    avg_actual_homework_num,
    avg_total_exam_num,
    avg_actual_exam_num,
    avg_evaluate_num,
    avg_question_answer_num,
    avg_note_num,
    avg_error_num,
    avg_login_log_num,
    avg_question_times,
    avg_getscore
    FROM
    t_study_behavior_class
    WHERE
    avg_getscore > 0
    AND avg_getscore < 100'''
    main(sql)

自定义方法dbcConnect
在下面博客中
https://blog.csdn.net/qq_30868737/article/details/103995174

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值