【离散数学配套西安电大教材】代数

第6章 代数

一、代数结构

构成

载体

一个非空集合 S S S.

封闭性

设*是集合 S S S上的二元运算, S ′ S' S S S S的子集,如果
∀   a , b ∈ S ′ → a ∗ b ∈ S ′ \forall\ a,b\in S'\rightarrow a*b\in S'  a,bSabS
那么 S ′ S' S对*是封闭的.

定义在载体上的运算

S m S^m Sm S S S的一个映射.(满足封闭性)

代数常数

载体的幺元或零元.

代数三要素:载体,运算,代数常数.


同种类代数

  • 有相同的构成成分:两个代数包含同样个数的运算(对应元数相同)和常数.
  • 有一组相同的公理(用载体元素和代数运算的符号写成的方程).

幺元与零元

幺元

与载体中任一元素x进行二元运算后,载体元素x不变的载体元素.
1 ∗ x = x ∗ 1 = x 1*x=x*1=x 1x=x1=x

零元

与载体中任一元素x进行二元运算后,载体元素x变成零元的载体元素.
0 ∗ x = x ∗ 0 = 0 0*x=x*0=0 0x=x0=0

  • 一个二元运算幺元与零元存在则唯一.

逆元

定义

设*是 S S S上的二元运算,若它存在幺元且 x ∗ y = 1 x*y=1 xy=1,那么关于运算*, x x x y y y的左逆元, y y y x x x的右逆元. 若 x ∗ y = y ∗ x = 1 x*y=y*x=1 xy=yx=1成立,则关于运算*, x x x y y y互为逆元.( x x x的逆元和记作 x − 1 x^{-1} x1).

性质
  1. 幺元的逆元是自身.

  2. 设*是 S S S上的二元运算, a ∈ S a\in S aS,若 ∀ x , y ∈ S \forall x,y\in S x,yS​,有
    ( a ∗ x = a ∗ y ) ∨ ( x ∗ a = y ∗ a ) ⇒ ( x = y ) (a*x=a*y)\vee(x*a=y*a)\Rightarrow(x=y) (ax=ay)(xa=ya)(x=y)

    则称 a a a是可约的.

  3. 存在逆元的元素 a a a称为可逆的,对于可结合运算,此逆元唯一,且 a a a可约.

二、子代数

定义

A = < S , ∗ , Δ , k > A=<S,*,\Delta,k> A=<S,,Δ,k>是一代数,如果

  1. S ′ ⊆ S S'\subseteq S SS
  2. S ′ S' S S S S上的运算*和 Δ \Delta Δ封闭
  3. k ∈ S ′ k\in S' kS

那么 A ′ = < S ′ , ∗ , Δ , k > A'=<S',*,\Delta,k> A=<S,,Δ,k> A A A的子代数.


性质

如果 A ′ A' A A A A的子代数,那么 A ′ A' A A A A有相同的构成成分和服从相同的公理.


平凡子代数

A A A自己以及由 A A A的常数集合组成的最小子代数.


真子代数

除平凡子代数以外其余子代数.

三、同态

定义

A = < S , ∗ , Δ , k > A=<S,*,\Delta,k> A=<S,,Δ,k> A ′ = < S ′ , ∗ ′ , Δ ′ , k ′ > A'=<S',*',\Delta',k'> A=<S,,Δ,k>是具有相同构成成分的代数, h h h是一个函数,如果

  1. h : S → S ′ h:S\rightarrow S' h:SS
  2. h ( a ∗ b ) = h ( a ) ∗ ′ h ( b ) h(a*b)=h(a)*'h(b) h(ab)=h(a)h(b)
  3. h ( Δ a ) = Δ ′ h ( a ) h(\Delta a)=\Delta'h(a) h(Δa)=Δh(a)
  4. h ( k ) = k ′ h(k)=k' h(k)=k

这里 a a a b b b S S S的任意元素,则称 h h h是从 A A A A ′ A' A同态 A ′ ′ = < h ( S ) , ∗ ′ , Δ ′ , k ′ > A''=<h(S),*',\Delta',k'> A=<h(S),,Δ,k>称为 A A A到在映射 h h h下的同态象.若 h h h为单射函数,则称 h h h为单一同态,若 h h h为满射,则称 h h h为满同态,若 h h h为双射,则称 h h h同构 A ′ A' A为同构象.若 A = A ′ A=A' A=A,则称 h h h自同态;若 h h h是自同态且是同构,则 h h h自同构.


性质

  1. A ′ ′ A'' A A ′ A' A的子代数(不论 h h h是否是同构).
  2. 若*是可交换或可结合的,则在 A ′ ′ A'' A中, ∗ ′ *' 也是可交换或可结合的.
  3. 若对*, A A A有幺(零)元 e e e,则对 ∗ ′ *' ,代数 A ′ ′ A'' A有幺(零)元 h ( e ) h(e) h(e).
  4. 对*,若 ∃ x ∈ S \exist x\in S xS有逆元 x − 1 x^{-1} x1,则对 ∗ ′ *' ,在代数 A ′ ′ A'' A中,元素 h ( x ) h(x) h(x)有逆元 h ( x − 1 ) h(x^{-1}) h(x1).

四、同余关系 商代数 积代数

同余关系

∼ \sim 是代数 A = < S , ∗ , Δ , k > A=<S,*,\Delta,k> A=<S,,Δ,k>的载体 S S S上的一个等价关系,若
∀   a , b , c ∈ S , a ∼ b → ( a ∗ c ∼ b ∗ c ) ∧ ( c ∗ a ∼ c ∗ b ) \forall\ a,b,c\in S,\quad a\sim b\rightarrow (a*c\sim b*c)\wedge (c*a\sim c*b)  a,b,cS,ab(acbc)(cacb)
则称等价关系 ∼ \sim 在运算*下仍能保持, ∼ \thicksim 是关于运算*的同余关系,同理若
∀   a , b ∈ S , a ∼ b → Δ a ∼ Δ b \forall\ a,b\in S,\quad a\thicksim b\rightarrow\Delta a\thicksim\Delta b  a,bS,abΔaΔb
则称 ∼ \thicksim 是关于运算 Δ \Delta Δ的同余关系.

若等价关系 ∼ \thicksim 在运算*和 Δ \Delta Δ均能保持,则 ∼ \thicksim 称为代数 A A A的同余关系 ∼ \thicksim 的等价类叫做关系 ∼ \thicksim 同余类.

同余关系是一种等价关系,同余类是一种等价类.


商代数

代数 A / ∼ = < S / ∼ , ∗ ′ , Δ ′ , [ k ] > A/\thicksim=<S/\thicksim,*',\Delta',[k]> A/=<S/,,Δ,[k]>,其中 ∗ ′ *' Δ ′ \Delta' Δ的定义如下
∀   [ a ] , [ b ] ∈ S / ∼ , [ a ] ∗ ′ [ b ] = [ a ∗ b ] , Δ ′ [ a ] = [ Δ a ] \forall\ [a],[b]\in S/\thicksim,\quad [a]*'[b]=[a*b],\quad \Delta'[a]=[\Delta a]  [a],[b]S/,[a][b]=[ab],Δ[a]=[Δa]


自然同态

如果 ∼ \thicksim 是代数 A = < S , ∗ , Δ , k > A=<S,*,\Delta,k> A=<S,,Δ,k>上的同余关系,那么规范映射 h : S → S / ∼ h:S\rightarrow S/\sim h:SS/是从代数 A A A到商代数 A / ∼    = < S / ∼ , ∗ ′ , Δ ′ , [ k ] > A/\sim\;=<S/\sim,*',\Delta',[k]> A/=<S/,,Δ,[k]>的同态,称为与 ∼ \thicksim 相关的自然同态.

自然同态是一种规范映射.

P147: 设 R R R是一集合 X X X上的等价关系,函数
g : X → X / R , g ( x ) = [ x ] R g:X\rightarrow X/R,\quad g(x)=[x]_R g:XX/R,g(x)=[x]R
叫做从 X X X到商集 X / R X/R X/R规范映射.

f f f是从 A = < S , ∗ , Δ , k > A=<S,*,\Delta,k> A=<S,,Δ,k> A ′ = < S ′ , ∗ ′ , Δ ′ , k ′ > A'=<S',*',\Delta',k'> A=<S,,Δ,k>的同态, ∼ \sim A A A上由 f f f诱导的同余关系,那么,从 A / ∼ = < S / ∼ , ∗ ′ ′ , Δ ′ ′ , [ k ] > A/\sim=<S/\sim,*'',\Delta'',[k]> A/=<S/,,Δ,[k]> < f ( S ) , ∗ ′ , Δ ′ , k ′ > <f(S),*',\Delta',k'> <f(S),,Δ,k>存在同构 h h h.

商代数到同态象存在同构.


积代数

A ′ = < S ′ , ∗ ′ , Δ ′ , k ′ > A'=<S',*',\Delta',k'> A=<S,,Δ,k> A ′ ′ = < S ′ ′ , ∗ ′ ′ , Δ ′ ′ , k ′ ′ > A''=<S'',*'',\Delta'',k''> A=<S,,Δ,k>的积代数为
A ′ × A ′ ′ = < S ′ × S ′ ′ , ∗ , Δ , < k ′ , k ′ ′ > > A'\times A''=<S'\times S'',*,\Delta,<k',k''>> A×A=<S×S,,Δ,<k,k>>
其中*和 Δ \Delta Δ的定义如下:
< a , b > ∗ < c , d > = < a ∗ ′ c , b ∗ ′ ′ d > Δ < a , b > = < Δ ′ a , Δ ′ ′ b > <a,b>*<c,d>=<a*'c,b*''d>\\ \Delta<a,b>=<\Delta'a,\Delta''b> <a,b><c,d>=<ac,bd>Δ<a,b>=<Δa,Δb>

五、半群 独异点

定义

代数 A = < S , ∗ > A=<S,*> A=<S,>,*是二元运算且符合结合律: a ∗ ( b ∗ c ) = ( a ∗ b ) ∗ c a*(b*c)=(a*b)*c a(bc)=(ab)c,则 A A A称作半群;若 A = < S , ∗ , e > A=<S,*,e> A=<S,,e> e e e是幺元,则 A A A称作独异点.


独异点中任意元素的幂

独异点中任意元素 a a a的幂定义如下
在这里插入图片描述

  • 等幂元素

    x ∗ x = x x*x=x xx=x,则 x x x称为等幂元素.

  • 可交换半群中等幂元素集合构成的半群是原半群的子半群.

由于独异点中运算*是可结合的,所以有以下定律
在这里插入图片描述


子半群 子独异点

< T , ∗ > <T,*> <T,> < S , ∗ > <S,*> <S,>的子半群,当且仅当

  1. T ⊆ S T\subseteq S TS
  2. T T T关于运算 ∗ * 封闭

< T , ∗ , 1 > <T,*,1> <T,,1> < S , ∗ , 1 > <S,*,1> <S,,1>的子独异点,当且仅当

  1. T ⊆ S T\subseteq S TS
  2. T T T关于运算 ∗ * 封闭
  3. 1 ∈ T 1\in T 1T

循环独异点

定义

< S , ∗ , e > <S,*,e> <S,,e>是独异点,若 S S S中存在元素 g g g S S S中所有元素 a a a都能被表示为 a = g h ,   h ∈ N a=g^h,\,h\in N a=gh,hN,则称此独异点是循环独异点, g g g是此循环独异点的生成元.

性质

循环独异点都是可交换的.


生成元概念的扩展

< S , ∗ > <S,*> <S,>是半群, Σ ⊆ S \Sigma\subseteq S ΣS,定义一个集合 Σ + \Sigma^+ Σ+如下:

  1. a ∈ Σ → a ∈ Σ + a\in\Sigma\rightarrow a\in\Sigma^+ aΣaΣ+
  2. x , y ∈ Σ + → x ∗ y ∈ Σ + x,y\in\Sigma^+\rightarrow x*y\in\Sigma^+ x,yΣ+xyΣ+
  3. 有限次运用1和2生成的元素属于 Σ + \Sigma^+ Σ+

< Σ + , ∗ > <\Sigma^+,*> <Σ+,> < S , ∗ > <S,*> <S,>的子半群,称为 Σ \Sigma Σ生成的子半群 Σ \Sigma Σ生成元集合.

< Σ + ∪ { e } , ∗ , e > <\Sigma^+\cup\{e\},*,e> <Σ+{e},,e> Σ \Sigma Σ生成的独异点.

Σ \Sigma Σ是单元素集合时,生成的独异点就是循环独异点.

< S , ∗ > <S,*> <S,>是一给定半群, < S S , ∘ > <S^S,\circ> <SS,>是从 S S S S S S的函数集合在合成运算下构成的半群,则存在半群同态 h : S → S S h:S\rightarrow S^S h:SSS.

六、群

定义

每个元素都有逆元的独异点 < G , ∗ , − 1 , e > <G,*,-1,e> <G,,1,e>,这里 − 1 -1 1是求逆运算,因为每个元素的逆元唯一,所以可视作一元运算,简记为 < G , ∗ > <G,*> <G,>,有限群的基数 ∣ G ∣ |G| G称为群的阶数.


性质

  1. 群中任何元素都是可约的.
  2. 幺元是群中唯一等幂元素.
  3. 群的运算表中的每一行或每一列都是 G G G中元素的一个置换.
  4. ∀   a , b ∈ G ( a ∗ b ) − 1 = b − 1 ∗ a − 1 \forall\ a,b\in G\quad (a*b)^{-1}=b^{-1}*a^{-1}  a,bG(ab)1=b1a1
  5. 一、二、三、五阶群只有一个,四、六阶群有两个;一到五阶群是可交换群,六阶群不全是.

元素的阶

定义

G G G是一个群,且 a ∈ G a\in G aG,若存在 n ∈ N ∗ n\in N^* nN使 a n = e a^n=e an=e,则称元素的阶是有限的,最小正整数 n n n称为元素 a a a的阶,若不存在这样的 n n n,则称元素 a a a有无限阶.

性质
  1. 群中元素 a a a有一有限阶 n n n,则
    n ∣ k ↔ a k = e n|k\leftrightarrow a^k=e nkak=e

  2. 群中任一元素和它的逆元同阶.

  3. 有限群中任一元素的阶是有限的,且必是 ∣ G ∣ |G| G的一个因子.

  4. 满足定律
    KaTeX parse error: No such environment: align* at position 9: \begin{̲a̲l̲i̲g̲n̲*̲}̲ \begin{split}…


置换群

  • 集合A的基数为n,则记A上的所有置换的集合为 S n S_n Sn.

  • 置换可以进行合成运算, p 1 ∘ p 2 p_1\circ p_2 p1p2表示先进行 p 2 p_2 p2置换,再进行 p 1 p_1 p1置换; p 1 ◊ p 2 p_1\Diamond p_2 p1p2表示先进行 p 1 p_1 p1置换,再进行 p 2 p_2 p2置换.

  • < S 2 , ◊ > <S_2,\Diamond> <S2,>定义如下
    p 1 = ( 1 2 1 2 ) p 2 = ( 1 2 2 1 ) p_1=\begin{pmatrix} 1&2\\ 1&2\\ \end{pmatrix}\quad p_2=\begin{pmatrix} 1&2\\ 2&1\\ \end{pmatrix} p1=(1122)p2=(1221)

    ◊ \Diamond p 1 p_1 p1 p 2 p_2 p2
    p 1 p_1 p1 p 1 p_1 p1 p 2 p_2 p2
    p 2 p_2 p2 p 2 p_2 p2 p 1 p_1 p1
  • < S 3 , ◊ > <S_3,\Diamond> <S3,>定义如下

    ◊ \Diamond p 1 p_1 p1 p 2 p_2 p2 p 3 p_3 p3 p 4 p_4 p4 p 5 p_5 p5 p 6 p_6 p6
    p 1 p_1 p1 p 1 p_1 p1 p 2 p_2 p2 p 3 p_3 p3 p 4 p_4 p4 p 5 p_5 p5 p 6 p_6 p6
    p 2 p_2 p2 p 2 p_2 p2 p 1 p_1 p1 p 5 p_5 p5 p 6 p_6 p6 p 3 p_3 p3 p 4 p_4 p4
    p 3 p_3 p3 p 3 p_3 p3 p 6 p_6 p6 p 1 p_1 p1 p 5 p_5 p5 p 4 p_4 p4 p 2 p_2 p2
    p 4 p_4 p4 p 4 p_4 p4 p 5 p_5 p5 p 6 p_6 p6 p 1 p_1 p1 p 2 p_2 p2 p 3 p_3 p3
    p 5 p_5 p5 p 5 p_5 p5 p 4 p_4 p4 p 2 p_2 p2 p 3 p_3 p3 p 6 p_6 p6 p 1 p_1 p1
    p 6 p_6 p6 p 6 p_6 p6 p 3 p_3 p3 p 4 p_4 p4 p 2 p_2 p2 p 1 p_1 p1 p 5 p_5 p5
  • 给定集合A,|A|=n,A上的置换所构成的群称为n次置换群;A上的所有置换所构成的群称为n次对称群.

    n次对称群=n!次置换群

  • 两面体群:在合成运算 ◊ \Diamond 作用下,n边正多边形的所有旋转和翻转的集合构成一个n次的2n阶的置换群,这类群通称两面体群.


循环群

定义

< G , ∗ > <G,*> <G,>是一个群,若 G G G中存在一个元素 g g g G G G中所有元素 a a a都能被表示为 a = g i ,   i ∈ I a=g^i,\,i\in I a=gi,iI,则称 < G , ∗ > <G,*> <G,>是一个循环群.也说循环群是由g生成的,g是 < G , ∗ > <G,*> <G,>的生成元.

类似循环独异点.

性质
  1. 每个循环群都是可交换群.

  2. < G , ∗ > <G,*> <G,>是由 g ∈ G g\in G gG生成的有限循环群,若 ∣ G ∣ = n |G|=n G=n,则
    G = { g , g 2 , g 3 , . . . , g n = e } G=\{g,g^2,g^3,...,g^n=e\} G={g,g2,g3,...,gn=e}
    且n是使 g n = e g^n=e gn=e的最小正整数.


子群

< S , ∗ > <S,*> <S,> < G , ∗ > <G,*> <G,>的子群当且仅当:

  1. a , b ∈ S → a ∗ b ∈ S a,b\in S\rightarrow a*b\in S a,bSabS
  2. a ∈ S → a − 1 ∈ S a\in S\rightarrow a^{-1}\in S aSa1S

若G是有限群,则只需满足1即可.


群同态

定义

从一个群到另一个群的同态.

性质
  1. 从一个群到另一代数系统存在同构,则这一代数系统也是一个群.

  2. 设h是从 < G , ∗ > <G,*> <G,> < H , ∗ ′ > <H,*'> <H,>的群同态,h的核定义为G的一个子集,该集合包含所有映入H的幺元的元素,记为ker(h).

    < k e r ( h ) , ∗ > <ker(h),*> <ker(h),> < G , ∗ > <G,*> <G,>的子群.

  3. h诱导的 G G G上的等价关系是 < G , ∗ > <G,*> <G,>的同余关系.

  4. < k e r ( h ) , ∗ > <ker(h),*> <ker(h),> < G , ∗ > <G,*> <G,>的正规子群,它的陪集是3中同余关系的同余类.

  5. < k e r ( h ) , ∗ > <ker(h),*> <ker(h),>同构于 < h ( G ) , ∗ ′ > <h(G),*'> <h(G),>.

凯莱表示定理

一个n阶有限群,同构于n次置换群.


拉格朗日定理

内容

任意一个有限群的子群的阶数整除它的阶数.

逆定理只对循环群成立.

推论
  1. 质数阶的群没有非平凡子群.

    < { e } , ∗ > , < G , ∗ > <\{e\},*>,<G,*> <{e},>,<G,> < G , ∗ > <G,*> <G,>的平凡子群

  2. 一个质数阶的群必然是循环的,任一与幺元不同的元素都是生成元.


陪集

定义

< H , ∗ > <H,*> <H,> < G , ∗ > <G,*> <G,>的子群, a ∈ G a\in G aG确定的子群 < H , ∗ > <H,*> <H,>的左陪集为集合 a H = { a ∗ h ∣ h ∈ H } aH=\{a*h|h\in H\} aH={ahhH},右陪集为集合 H a = { h ∗ a ∣ h ∈ H } Ha=\{h*a|h\in H\} Ha={hahH} a a a称为这两种陪集的表示元素.

性质
  1. H的两个左(右)陪集要么相等,要么不相交.

    类似P123 定理3.5-3

  2. H的任意陪集的基数是相等的.

H的左陪集等价关系 ∼ \sim

∼ \sim 定义如下:
a ∼ b ⇔ a − 1 ∗ b ∈ H ⇔ b ∈ a H a\sim b\Leftrightarrow a^{-1}*b\in H\Leftrightarrow b\in aH aba1bHbaH
a ∼ b a\sim b ab习惯上写作 a ≡ b ( m o d   H ) a\equiv b(mod\ H) ab(mod H).


正规子群

定义

左陪集和右陪集相等的子群,它的左陪集和右陪集统一简称为陪集.

所有可交换群的子群、平凡子群都是正规子群.

性质

正规子群的不同陪集都是G的同余类,其诱导出的陪集关系是同余关系.


商群

定义

< H , ∗ > <H,*> <H,> < G , ∗ > <G,*> <G,>的正规子群,H诱导出的陪集关系记为 ∼ \sim ,则根据商代数的定义有
KaTeX parse error: No such environment: equation at position 8: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲}̲ \begin{aligned…
习惯记为 A / H = < G / H , ∗ ′ > A/H=<G/H,*'> A/H=<G/H,>,称为 G G G关于正规子群 H H H的商群.

性质
  1. 商群的阶数等于 ∣ G ∣ / ∣ H ] |G|/|H] G/H].
  2. 商群也是一个群.

七、环 域

定义

代数 < R , + , ∙ > <R,+,\bullet> <R,+,>满足以下性质被称作

  1. < R , + > <R,+> <R,+>是阿贝尔群.

  2. < R , ∙ > <R,\bullet> <R,>是半群

  3. ∙ \bullet + + +上满足分配律
    a ⋅ ( b + c ) = a ⋅ b + a ⋅ c ( b + c ) ⋅ a = b ⋅ a + c ⋅ a a\cdot (b+c)=a\cdot b+a\cdot c\\ (b+c)\cdot a=b\cdot a+c\cdot a a(b+c)=ab+ac(b+c)a=ba+ca

性质

加法幺元同时是乘法零元,记为0.


无零因子环

定义

< R , + , ∙ > <R,+,\bullet> <R,+,>中存在非0元素 a , b ∈ R a,b\in R a,bR,使 a ⋅ b = 0 a\cdot b=0 ab=0,则称此环为含零因子环,a、b称为含零因子,无零因子的环称为无零因子环.

性质

环是无零因子环 ⇔   < R , + , ∙ > \Leftrightarrow\ <R,+,\bullet>  <R,+,>满足可约律.


整环

如果一个无零因子环是可交换的,且含幺元,则它是整环.


定义1

整环 < F , + , ∙ > <F,+,\bullet> <F,+,> ∣ F ∣ > 1 , < F − { 0 } , ∙ > |F|>1,<F-\{0\},\bullet> F>1,<F{0},>是群,则 < F , + , ∙ > <F,+,\bullet> <F,+,>.

定义2

代数 < F , + , ∙ > <F,+,\bullet> <F,+,>满足以下性质被称作

  1. < F , + > <F,+> <F,+>是阿贝尔群.

  2. < F − { 0 } , ∙ > <F-\{0\},\bullet> <F{0},>是阿贝尔群.

  3. ∙ \bullet + + +上满足分配律
    a ⋅ ( b + c ) = a ⋅ b + a ⋅ c ( b + c ) ⋅ a = b ⋅ a + c ⋅ a a\cdot (b+c)=a\cdot b+a\cdot c\\ (b+c)\cdot a=b\cdot a+c\cdot a a(b+c)=ab+ac(b+c)a=ba+ca


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值