离散数学重点(第三部分)

三.代数结构

离散数学的知识只包括本人根据自身前提情况认为有必要一看的内容


1. 二元运算:设S是集合,函数f:S×S → S称为S的二元运算。
验证是否是二元运算:S内任意两元素都可运算且结果唯一、S对该运算封闭

2. 二元运算主要性质
设°*为S上的二元运算。如果对∀x,y,z ∈ S,都有:

  • x°y = y°x,满足交换律
  • (x°y)°z = x°(y°z),满足结合律
  • x°x = x,满足幂等律(只有一部分x满足,则x为幂等元)
  • x*(y°z) = (x*y)°(y*z),满足左分配律
    (y°z)*x = (y*x)°(z*y),满足右分配律
  • 若°*满足交换律,x*(x°y)=x,x°(x*y)=x,°、*满足吸收律
  • 若有el°x=x(x°er=x),称el(er)是关于°的左(右)单位元
    既是左单位元又是右单位元的称为单位元(幺元),记作e
  • 若有θl°x=θl(x°θr=θr),称θl(θr)为关于°的左(右)零元
    既是左零元又是右零元的称为零元,记作θ

定理:e、θ分别是°的单位元、零元若s至少右两个元素,则e≠θ

  • 若有γl°x=e(x°γr=e),称称γl(γr)是x的左(右)逆元
    既是x的左逆元又是右逆元的称为逆元,记作γ

    若x的逆元存在,称x可逆
  • x°y=x°z,且x≠θ ⇒ y=z
    y°x=z°x,且x≠θ ⇒ y=z
    则°满足消去律

3. 代数系统:非空集合S和S上的k个运算组成的系统。简称代数
幺元、零元:特异元素(代数常数)

4. 子代数:和原来的代数系统相比集合是子集,运算不变,代数常数不变的代数系统
最大子代数:自身
最小子代数:集合为所有代数常数
最大与最小子代数称为平凡子代数

5. 两个代数的积
设v1=<S1,°>,v2=<S2,*>,°*为二元运算。
v1 × v2是一个含有·的代数系统。v1 × v2 = <S,·>
其中S = S1 × S2,
且对任意的<x1,y1>,<x2,y2> ∈ S1×S2:
有<x1,y1>·<x2,y2>=<x1°y1,x2*y2>

6. 同态
设v1=<S1,°>,v2=<S2,*>,°*为二元运算。
若存在映射φ:S1→S2,满足对任意的x,y∈S1,有:
φ(x°y) = φ(x) * φ(y)
则称φ是v1到v2的同态映射

同态像:<φ(S1),*>

φ是满射的:满同态
φ是单射的:单同态
φ是双射的:同构

两个运算符的同态:v1=<S1,°,*>,v2=<S2,°’,*’>,°、*、°’、*‘都是二元运算。满足:
φ(x°y) = φ(x) °’ φ(y)
φ(x*y) = φ(x) *’ φ(y)

具有一元运算的同态:v1=<S1,°,△>,v2=<S2,*,△’>,°与*为二元,△与△‘为一元。满足:
φ(x°y) = φ(x) * φ(y)
φ(△(x)) = △’(φ(x))

具有代数常数的同态:v1=<S1,°,K1>,v2=<S2,*,K2>,°与*为二元,K1K2为代数常数。满足:
φ(x°y) = φ(x) * φ(y)
φ(K1) = K2

7. 半群:v=<S,°>是代数系统,°是二元运算且是可结合的。则v是半群
若°还是可交换的,则v叫做可交换半群

半群运算的幂:x^1 = x, x^(n+1) = x^n ° x
xn°xm = x^(n+m), (xn)m = x^(nm)

独异点:半群的二元运算含有幺元,则称为含幺半群,也可以叫独异点。

子半群:半群的子代数。独异点的子代数叫子独异点(子半群+幺元)

积半群:设v1=<S1,°>,v2=<S2,*>为半群。则v1 × v2 = <S,·>为半群。
且对任意的<x1,y1>,<x2,y2> ∈ S1×S2:
有<x1,y1>·<x2,y2>=<x1°y1,x2*y2>

同态:同代数系统的同态。
独异点的同态同代数系统的具有代数常数的同态。

8. 群:v=<G,°>是代数系统,°是二元运算。且:
°可结合、存在幺元e∈G、任意元素都存在逆元。则v是群

交换群(阿贝尔群):群的二元运算可交换
无限群:集合无限
群的阶:有限群集合元素的个数

关于群元素的负幂:n>0,x^(-n) = [x(-1)]n
即有:x^0 = e
x^(n+1) = x^n ° x
x^(-n) = [x(-1)]n
xn°xm = x^(n+m)
(xn)m = x^(nm)

(xy)^(-1) = y(-1)x(-1)

元素x的阶:G集合里的一元素x,使x^k = e成立的最小正整数k叫做x的阶。记为|x|
不存在k,x为无限阶

消去律:G为群,则对任意a,b,c ∈ G,有:
若ab = ac,则b = c
若ba = ca,则b = c

置换:G为有限群,则G运算表的每一行(列)都是G中元素的一个置换。且不同行(列)的置换都不同。

子群:运算都在,集合为子集

生成子群:G为群,对G中任何x,x的幂构成的集合称为x生成的子群,记作<x>

群的中心:G为群,令C是G中所有的元素都可交换的元素构成的集合,称C为G的中心

循环群:若存在a ∈ G,使G=<a>,称G为循环群,a为G的生成元

9. 环:v=<R,+,*>是代数系统。R为集合,+*为二元运算。若:

  • <R,+>为阿贝尔群
  • <R,*>为半群
  • *对+有分配律

则v是环。

  • 4
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值