二分图最大匹配的经典应用,将行看成二分图的左边点,列看成右边节点,可以放棋子的地方,将左边,右边相应的节点连线做边,然后跑匈牙利就算出来最大匹配
但这题需要求出,重要点,根据定义,不难想到枚举删边,然后跑K次匈牙利,看看缺了某条边后,最大匹配会不会减少。。
#include<iostream>
#include<stdio.h>
#include<queue>
#include<algorithm>
#include<string.h>
#define MX 111111
#define INF 0x3f3f3f3f
#define mem(x,y) memset(x,y,sizeof(x))
#define FIN freopen("input.txt","r",stdin)
using namespace std;
int n,m,k;
int A[MX],B[MX];
int head[MX],rear;
struct
{
int to,nxt;
} edge[MX];
void edge_init()
{
mem(head,-1);
rear=0;
}
void edge_add(int a,int b)
{
edge[rear].to=b;
edge[rear].nxt=head[a];
head[a]=rear++;
}
int match[MX];
bool vis[MX];
bool hungarian_dfs(int u,int a,int b)
{
for(int i=head[u]; ~i; i=edge[i].nxt)
{
int v=edge[i].to;
if((a==u&&b==v)||(a==v&&b==u)) continue;
if(vis[v]) continue;
vis[v]=1;
if(match[v]==-1||hungarian_dfs(match[v],a,b))
{
match[v]=u;
return 1;
}
}
return 0;
}
int hungarian(int a,int b)
{
mem(match,-1);
int ret=0;
for(int i=1; i<=n; i++)
{
mem(vis,0);
ret+=hungarian_dfs(i,a,b);
}
return ret;
}
int main()
{
FIN;
int cas=0;
while(cin>>n>>m>>k)
{
edge_init();
for(int i=1; i<=k; i++)
{
int a,b;
scanf("%d%d",&A[i],&B[i]);
B[i]+=n;
edge_add(A[i],B[i]);
edge_add(B[i],A[i]);
}
int ans=hungarian(0,0);
int cnt=0;
for(int i=1; i<=k; i++)
{
if(ans>hungarian(A[i],B[i])) cnt++;
}
printf("Board %d have %d important blanks for %d chessmen.\n",++cas,cnt,ans);
}
return 0;
}