【Luogu3806】点分治(点分治)

题面

题目描述

给定一棵有n个点的树

询问树上距离为k的点对是否存在。

输入格式:

n,m 接下来n-1条边a,b,c描述a到b有一条长度为c的路径

接下来m行每行询问一个K

输出格式:

对于每个K每行输出一个答案,存在输出“AYE”,否则输出”NAY”(不包含引号)

题解

点分治的模板题目,不做过多的解释
据我这个蒟蒻的观察
这道题的复杂度是 O(n2)

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 11000
#define INF 1000000000
#define K 10000000
inline int read()
{
    int x=0,t=1;char ch=getchar();
    while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
    if(ch=='-')t=-1,ch=getchar();
    while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
    return x*t;
}
struct Line
{
    int v,next,w;
}e[MAX<<1];
int h[MAX],cnt=1;
int size[MAX],minr,root,Size;
int S[MAX],tot;
bool vis[MAX];
int num[K+10],n,m;
inline void Add(int u,int v,int w)
{
    e[cnt]=(Line){v,h[u],w};
    h[u]=cnt++;
}
void Getroot(int u,int ff)
{
    size[u]=1;
    int ret=0;
    for(int i=h[u];i;i=e[i].next)
    {
        int v=e[i].v;
        if(vis[v]||v==ff)continue;
        Getroot(v,u);
        ret=max(ret,size[v]);
        size[u]+=size[v];
    }
    ret=max(ret,Size-size[u]);
    if(ret<minr)minr=ret,root=u;
}
void Getdep(int u,int ff,int dep)
{
    S[++tot]=dep;
    for(int i=h[u];i;i=e[i].next)
    {
        int v=e[i].v;
        if(v==ff||vis[v])continue;
        Getdep(v,u,dep+e[i].w);
    }
}
void Calc(int u,int fl,int pr)
{
    tot=0;
    Getdep(u,u,0);
    for(int i=1;i<=tot;++i)
        for(int j=1;j<=tot;++j)
            if(fl&&S[i]+S[j]<=K)num[S[i]+S[j]]++;
            else if(S[i]+S[j]+pr<=K)num[S[i]+S[j]+pr]--;
}
void DFS(int u)
{
    Calc(u,1,0);
    vis[u]=true;
    for(int i=h[u];i;i=e[i].next)
    {
        int v=e[i].v;
        if(vis[v])continue;
        Calc(v,0,e[i].w*2);
        minr=n;Size=size[v];Getroot(v,u);
        DFS(root);
    }
}
int main()
{
    Size=n=read(),m=read();
    for(int i=1,u,v,w;i<n;++i)
    {
        u=read(),v=read(),w=read();
        Add(u,v,w);Add(v,u,w);
    }
    minr=n;Getroot(1,1);
    DFS(root);
    while(m--)
        num[read()]?puts("AYE"):puts("NAY");
    return 0;
}
棋盘问题,也称为“马踏棋盘问题”,是一个经典的分治算法案例。该问题的具体描述如下: 在一个 $2^n \times 2^n$ 的棋盘上,有一个方格缺失。现在要用一个“L”形的骨牌去覆盖棋盘上的所有方格,求出如何能够用最少的骨牌来覆盖棋盘。 下面是一个 $8 \times 8$ 的棋盘,其中缺失了红色的方格: ![棋盘问题](https://cdn.luogu.com.cn/upload/image_hosting/s2ninujh.png) 在分治算法中,我们将棋盘分成四个 $2^{n-1} \times 2^{n-1}$ 的子棋盘,然后将缺失的方格所在的子棋盘分成三个部分,如下图所示: ![棋盘问题分治图解](https://cdn.luogu.com.cn/upload/image_hosting/s2niob5a.png) 接下来,我们在不包含缺失方格的子棋盘上,用递归的方式继续分治。对于每个子棋盘,我们都可以找到一个位置来放置一块“L”形骨牌,使得该子棋盘上的所有方格都被覆盖。具体来说,我们可以在该子棋盘的中心位置放置一块“L”形骨牌,然后递归处理四个子棋盘。 对于包含缺失方格的子棋盘,我们可以在缺失方格的位置上放置一块“L”形骨牌,然后递归处理三个子棋盘。 最终,我们可以得到一个完整的覆盖方案,如下图所示: ![棋盘问题分治解法](https://cdn.luogu.com.cn/upload/image_hosting/s2niogj9.png) 这种分治算法的时间复杂度为 $O(1)$,因为每次递归都会将棋盘的规模缩小一半,所以总共的递归次数为 $O(\log n)$。而每次递归中,只需要进行常数次操作即可确定一个“L”形骨牌的位置,所以总的时间复杂度为 $O(\log n)$。 此外,需要注意的是,如果棋盘的大小不是 $2^n \times 2^n$,我们可以将棋盘扩大到最小的 $2^n \times 2^n$,然后将多余的部分视为缺失方格来处理即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值