题面
题解
这题很简单
第一问,因为边和点的访问次数都是1
所以拆点,所有边的容量都是1
源点汇点分别和第一层以及最后一层相连
如果一个点被访问过,
它自己拆开的点中就会有流,所以费用放在拆开的点的连边上
第二问
数字可以无限使用
那么,拆开的点之间的连边的容量变为INF
最后一层和汇点连的边也变成INF
第三问
啥都可以随便用
所有边都改成INF就行了
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 50000
#define MAXL 500000
#define INF 1000000000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line
{
int v,next,w,fy;
}e[MAXL];
bool vis[MAX];
int h[MAX],cnt=2;
inline void Add(int u,int v,int w,int fy)
{
e[cnt]=(Line){v,h[u],w,fy};h[u]=cnt++;
e[cnt]=(Line){u,h[v],0,-fy};h[v]=cnt++;
}
int pe[MAX],pr[MAX],dis[MAX];
int S,T,Cost,n,m,Flow;
bool SPFA()
{
memset(dis,63,sizeof(dis));
queue<int> Q;
Q.push(S);dis[S]=0;
while(!Q.empty())
{
int u=Q.front();Q.pop();
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(e[i].w&&dis[v]>dis[u]+e[i].fy)
{
dis[v]=dis[u]+e[i].fy;
pe[v]=i;pr[v]=u;
if(!vis[v])vis[v]=true,Q.push(v);
}
}
vis[u]=false;
}
if(dis[T]>=INF)return false;
int flow=INF;
for(int i=T;i!=S;i=pr[i])flow=min(flow,e[pe[i]].w);
for(int i=T;i!=S;i=pr[i])e[pe[i]].w-=flow,e[pe[i]^1].w+=flow;
Cost-=flow*dis[T];
Flow+=flow;
return true;
}
int tot;
int a[50][50],g[50][50];
int main()
{
freopen("digit.in","r",stdin);
freopen("digit.out","w",stdout);
m=read();n=read();
for(int i=1;i<=n;++i)
for(int j=1;j<i+m;++j)
a[i][j]=read(),g[i][j]=++tot;
S=0;T=tot+tot+1;
Cost=Flow=0;
for(int i=1;i<=m;++i)Add(S,g[1][i],1,0);
for(int i=1;i<n+m;++i)Add(g[n][i]+tot,T,1,0);
for(int i=1;i<=n;++i)
for(int j=1;j<i+m;++j)
Add(g[i][j],g[i][j]+tot,1,-a[i][j]);
for(int i=1;i<n;++i)
for(int j=1;j<i+m;++j)
Add(g[i][j]+tot,g[i+1][j],1,0),Add(g[i][j]+tot,g[i+1][j+1],1,0);
while(SPFA());printf("%d\n",Cost);
Cost=Flow=0;
memset(h,0,sizeof(h));cnt=2;
for(int i=1;i<=m;++i)Add(S,g[1][i],1,0);
for(int i=1;i<n+m;++i)Add(g[n][i]+tot,T,INF,0);
for(int i=1;i<=n;++i)
for(int j=1;j<i+m;++j)
Add(g[i][j],g[i][j]+tot,INF,-a[i][j]);
for(int i=1;i<n;++i)
for(int j=1;j<i+m;++j)
Add(g[i][j]+tot,g[i+1][j],1,0),Add(g[i][j]+tot,g[i+1][j+1],1,0);
while(SPFA());printf("%d\n",Cost);
Cost=Flow=0;
memset(h,0,sizeof(h));cnt=2;
for(int i=1;i<=m;++i)Add(S,g[1][i],1,0);
for(int i=1;i<n+m;++i)Add(g[n][i]+tot,T,INF,0);
for(int i=1;i<=n;++i)
for(int j=1;j<i+m;++j)
Add(g[i][j],g[i][j]+tot,INF,-a[i][j]);
for(int i=1;i<n;++i)
for(int j=1;j<i+m;++j)
Add(g[i][j]+tot,g[i+1][j],INF,0),Add(g[i][j]+tot,g[i+1][j+1],INF,0);
while(SPFA());printf("%d\n",Cost);
return 0;
}