【BZOJ2154】Crash的数字表格(莫比乌斯反演)

题面

BZOJ
简化题意:
给定 n,m

i=1nj=1mlcm(i,j)

题解

以下的一切都默认 n<m
我们都知道 lcm(i,j)=ijgcd(i,j)
所以所求化简

i=1nj=1mijgcd(i,j)

看到 gcd(i,j) 很不爽,于是就再提出来
d=1ni=1nj=1m[gcd(i,j)==d]ijd

也就是
d=1ni=1n/dj=1m/d[gcd(i,j)==1]ijd

d 提出来
ans=d=1ndi=1n/dj=1m/d[gcd(i,j)==1]ij

前面这一堆看起来管不了了
看后面的一段
i=1n/dj=1m/d[gcd(i,j)==1]ij

看到 n/d 这种东西很不爽呀
就写成这样吧。。
i=1xj=1y[gcd(i,j)==1]ij

这种东西怎么求?

f(d)=i=1xj=1y[gcd(i,j)==d]ij

根据莫比乌斯反演的常见套路


G(d)=i=1xj=1y[d|gcd(i,j)]ij

直接把 d 提出来
G(d)=d2i=1x/dj=1y/d[1|gcd(i,j)]ij

1|gcd(i,j) 是显然成立的
所以
G(d)=d2i=1x/dj=1y/dij

这玩意明显可以 O(1) 求(相当于两个等差数列相乘)

所以,要求的东西就是

f(1)=i=1xμ(i)G(i)

这道题就解决了一大半了
现在我们的复杂度是 O(nn) O(n2) 之间
需要继续优化

很显然的

ans=d=1ndi=1n/dj=1m/d[gcd(i,j)==1]ij

这个式子可以数论分块一波,复杂度少了 O(n)

还不够

继续看,

f(1)=i=1xμ(i)G(i)

这个式子把 G(x) 展开
f(1)=i=1xμ(i)i2i=1x/dj=1y/dij

还是可以数论分块
但是要预处理 μ(i)i2 的前缀和

然后复杂度就成了 O(n)
注释掉的是没用数论分块的式子

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MOD 20101009
#define MAX 12000000
#define ll long long
inline int read()
{
    int x=0,t=1;char ch=getchar();
    while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
    if(ch=='-')t=-1,ch=getchar();
    while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
    return x*t;
}
int mu[MAX],pri[MAX],tot;
bool zs[MAX];
int n,m;
int G[MAX],ans;
int smu[MAX],sqr[MAX];
void Getmu()
{
    zs[1]=true;mu[1]=1;
    for(int i=2;i<=n;++i)
    {
        if(!zs[i]){pri[++tot]=i;mu[i]=-1;}
        for(int j=1;j<=tot&&i*pri[j]<=n;++j)
        {
            zs[i*pri[j]]=true;
            if(i%pri[j])mu[i*pri[j]]=-mu[i];
            else{mu[i*pri[j]]=0;break;}
        }
    }
    for(int i=1;i<=n;++i)smu[i]=(smu[i-1]+mu[i]+MOD)%MOD;
}
int Solve(int xx,int yy)
{
    long long ans=0;
    //for(int i=1;i<=xx;++i)G[i]=1ll*i*i%MOD*1ll*(1ll*(1+xx/i)*(xx/i)/2%MOD)*(1ll*(1+yy/i)*(yy/i)/2%MOD)%MOD;
    //for(int i=1;i<=xx;++i)ans=(ans+1ll*mu[i]*G[i]%MOD+MOD)%MOD;
    int i=1,j;
    while(i<=xx)
    {
        j=min(xx/(xx/i),yy/(yy/i));
        int GG=1ll*(1ll*(1+xx/i)*(xx/i)/2%MOD)*(1ll*(1+yy/i)*(yy/i)/2%MOD)%MOD;
        ans+=1ll*(sqr[j]-sqr[i-1])%MOD*GG%MOD;
        ans%=MOD;
        i=j+1;
    }
    return (ans+MOD)%MOD;
}
int main()
{
    n=read();m=read();
    if(n>m)swap(n,m);
    Getmu();
    for(int i=1;i<=n;++i)sqr[i]=(sqr[i-1]+1ll*i*i%MOD*mu[i]%MOD+MOD)%MOD;
    //for(int i=1;i<=n;++i)ans=1ll*((ans+1ll*i*Solve(n/i,m/i))%MOD)%MOD;
    int i=1,j;
    while(i<=n)
    {
        j=min(n/(n/i),m/(m/i));
        int t=1ll*(i+j)*(j-i+1)/2%MOD;
        ans=(ans+1ll*Solve(n/i,m/i)*t%MOD)%MOD;
        i=j+1;
    }
    printf("%d\n",ans);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值