最小自然数原理
正文
设 TTT 是 NNN 的一个非空子集. 那么, 必有 t0∈Tt_{0}\in Tt0∈T, 使对任意的 t∈Tt\in Tt∈T 有 t0≤tt_{0}\leq tt0≤t, 即 t0t_{0}t0 是 TTT 中的最小自然数.
证明:
考虑由所有这样自然数 sss 组成的集合 SSS : ∀t∈T\forall t \in T∀t∈T, 都有 s≤ts \leq ts≤t .
- 因为 e∈Ne\in Ne∈N 且 ∀t∈T\forall t \in T∀t∈T, 都有 e≤te\leq te≤t, 所以 e∈Se\in Se∈S , 所以SSS 非空.
- 因为 TTT 为非空集合, 所以存在 t1∈Tt_{1}\in Tt1∈T , 由于 t1+e>t1t_{1}+e >t_{1}t1+e>t1 , 所以 t1+e∉St_{1} +e \notin St1+e∈/S (不要求 t1+e∈Tt_{1} + e \in Tt1+e∈T).
由以上两点和归纳公理可以推出: 必定存在 s0∈Ss_{0} \in Ss0∈S, 使得 s0+e∉Ss_{0} +e \notin Ss0+e∈/S,
假设不存在 s0∈Ss_{0} \in Ss0∈S, 使得 s0+e∉Ss_{0} +e \notin Ss0+e∈/S, 即对任意的 s∈Ss\in Ss∈S, s+e∈Ss +e \in Ss+e∈S,
结合上述的 e∈Se\in Se∈S, 由归纳公理可以得出 S=NS = NS=N.
由上述的第二点可以得到, t1+e∉St_{1} + e \notin St1+e∈/S 且 t1+e∈Nt_{1} + e \in Nt1+e∈N, 矛盾,
所以得证: 必定存在 s0∈Ss_{0} \in Ss0∈S, 使得 s0+e∉Ss_{0} +e \notin Ss0+e∈/S.
接下来证明 s0∈Ts_{0} \in Ts0∈T,
假设 s0∉Ts_{0}\notin Ts0∈/T, 即 ∀t∈T\forall t \in T∀t∈T, 都有 s0≠ts_{0} \neq ts0=t. 由于 s0∈Ss_{0}\in Ss0∈S, 所以 ∀t∈T\forall t \in T∀t∈T, 都有 s0≤ts_{0} \leq ts0≤t
所以 ∀t∈T\forall t \in T∀t∈T, 都有 s0<ts_{0}<ts0<t. 所以 ∀t∈T\forall t \in T∀t∈T, 都有 s0+e≤ts_{0} + e\leq ts0+e≤t.
所以 s0+e∈Ss_{0} + e \in Ss0+e∈S, 矛盾,
所以得证 s0∈Ts_{0} \in Ts0∈T.
取 t0=s0t_{0} = s_{0}t0=s0. 即得证最小自然数原理.
最小自然数原理
本文详细阐述了最小自然数原理的证明过程,通过构造特定集合并运用归纳公理,证明了任一非空自然数子集中存在最小元素。该原理是数学归纳法的基础,对理解自然数集的性质至关重要。
607





