最小自然数原理及其证明过程

最小自然数原理
本文详细阐述了最小自然数原理的证明过程,通过构造特定集合并运用归纳公理,证明了任一非空自然数子集中存在最小元素。该原理是数学归纳法的基础,对理解自然数集的性质至关重要。

最小自然数原理

正文

TTTNNN 的一个非空子集. 那么, 必有 t0∈Tt_{0}\in Tt0T, 使对任意的 t∈Tt\in TtTt0≤tt_{0}\leq tt0t, 即 t0t_{0}t0TTT 中的最小自然数.

证明:

考虑由所有这样自然数 sss 组成的集合 SSS : ∀t∈T\forall t \in TtT, 都有 s≤ts \leq tst .

  1. 因为 e∈Ne\in NeN∀t∈T\forall t \in TtT, 都有 e≤te\leq tet, 所以 e∈Se\in SeS , 所以SSS 非空.
  2. 因为 TTT 为非空集合, 所以存在 t1∈Tt_{1}\in Tt1T , 由于 t1+e>t1t_{1}+e >t_{1}t1+e>t1 , 所以 t1+e∉St_{1} +e \notin St1+e/S (不要求 t1+e∈Tt_{1} + e \in Tt1+eT).

由以上两点和归纳公理可以推出: 必定存在 s0∈Ss_{0} \in Ss0S, 使得 s0+e∉Ss_{0} +e \notin Ss0+e/S,

假设不存在 s0∈Ss_{0} \in Ss0S, 使得 s0+e∉Ss_{0} +e \notin Ss0+e/S, 即对任意的 s∈Ss\in SsS, s+e∈Ss +e \in Ss+eS,

结合上述的 e∈Se\in SeS, 由归纳公理可以得出 S=NS = NS=N.

由上述的第二点可以得到, t1+e∉St_{1} + e \notin St1+e/St1+e∈Nt_{1} + e \in Nt1+eN, 矛盾,

所以得证: 必定存在 s0∈Ss_{0} \in Ss0S, 使得 s0+e∉Ss_{0} +e \notin Ss0+e/S.

接下来证明 s0∈Ts_{0} \in Ts0T,

假设 s0∉Ts_{0}\notin Ts0/T, 即 ∀t∈T\forall t \in TtT, 都有 s0≠ts_{0} \neq ts0=t. 由于 s0∈Ss_{0}\in Ss0S, 所以 ∀t∈T\forall t \in TtT, 都有 s0≤ts_{0} \leq ts0t

所以 ∀t∈T\forall t \in TtT, 都有 s0<ts_{0}<ts0<t. 所以 ∀t∈T\forall t \in TtT, 都有 s0+e≤ts_{0} + e\leq ts0+et.

所以 s0+e∈Ss_{0} + e \in Ss0+eS, 矛盾,

所以得证 s0∈Ts_{0} \in Ts0T.

t0=s0t_{0} = s_{0}t0=s0. 即得证最小自然数原理.

评论 13
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值