最小自然数原理
正文
设 T T T 是 N N N 的一个非空子集. 那么, 必有 t 0 ∈ T t_{0}\in T t0∈T, 使对任意的 t ∈ T t\in T t∈T 有 t 0 ≤ t t_{0}\leq t t0≤t, 即 t 0 t_{0} t0 是 T T T 中的最小自然数.
证明:
考虑由所有这样自然数 s s s 组成的集合 S S S : ∀ t ∈ T \forall t \in T ∀t∈T, 都有 s ≤ t s \leq t s≤t .
- 因为 e ∈ N e\in N e∈N 且 ∀ t ∈ T \forall t \in T ∀t∈T, 都有 e ≤ t e\leq t e≤t, 所以 e ∈ S e\in S e∈S , 所以 S S S 非空.
- 因为 T T T 为非空集合, 所以存在 t 1 ∈ T t_{1}\in T t1∈T , 由于 t 1 + e > t 1 t_{1}+e >t_{1} t1+e>t1 , 所以 t 1 + e ∉ S t_{1} +e \notin S t1+e∈/S (不要求 t 1 + e ∈ T t_{1} + e \in T t1+e∈T).
由以上两点和归纳公理可以推出: 必定存在 s 0 ∈ S s_{0} \in S s0∈S, 使得 s 0 + e ∉ S s_{0} +e \notin S s0+e∈/S,
假设不存在 s 0 ∈ S s_{0} \in S s0∈S, 使得 s 0 + e ∉ S s_{0} +e \notin S s0+e∈/S, 即对任意的 s ∈ S s\in S s∈S, s + e ∈ S s +e \in S s+e∈S,
结合上述的 e ∈ S e\in S e∈S, 由归纳公理可以得出 S = N S = N S=N.
由上述的第二点可以得到, t 1 + e ∉ S t_{1} + e \notin S t1+e∈/S 且 t 1 + e ∈ N t_{1} + e \in N t1+e∈N, 矛盾,
所以得证: 必定存在 s 0 ∈ S s_{0} \in S s0∈S, 使得 s 0 + e ∉ S s_{0} +e \notin S s0+e∈/S.
接下来证明 s 0 ∈ T s_{0} \in T s0∈T,
假设 s 0 ∉ T s_{0}\notin T s0∈/T, 即 ∀ t ∈ T \forall t \in T ∀t∈T, 都有 s 0 ≠ t s_{0} \neq t s0=t. 由于 s 0 ∈ S s_{0}\in S s0∈S, 所以 ∀ t ∈ T \forall t \in T ∀t∈T, 都有 s 0 ≤ t s_{0} \leq t s0≤t
所以 ∀ t ∈ T \forall t \in T ∀t∈T, 都有 s 0 < t s_{0}<t s0<t. 所以 ∀ t ∈ T \forall t \in T ∀t∈T, 都有 s 0 + e ≤ t s_{0} + e\leq t s0+e≤t.
所以 s 0 + e ∈ S s_{0} + e \in S s0+e∈S, 矛盾,
所以得证 s 0 ∈ T s_{0} \in T s0∈T.
取 t 0 = s 0 t_{0} = s_{0} t0=s0. 即得证最小自然数原理.