最小自然数原理及其证明过程

最小自然数原理

正文

T T T N N N 的一个非空子集. 那么, 必有 t 0 ∈ T t_{0}\in T t0T, 使对任意的 t ∈ T t\in T tT t 0 ≤ t t_{0}\leq t t0t, 即 t 0 t_{0} t0 T T T 中的最小自然数.

证明:

考虑由所有这样自然数 s s s 组成的集合 S S S : ∀ t ∈ T \forall t \in T tT, 都有 s ≤ t s \leq t st .

  1. 因为 e ∈ N e\in N eN ∀ t ∈ T \forall t \in T tT, 都有 e ≤ t e\leq t et, 所以 e ∈ S e\in S eS , 所以 S S S 非空.
  2. 因为 T T T 为非空集合, 所以存在 t 1 ∈ T t_{1}\in T t1T , 由于 t 1 + e > t 1 t_{1}+e >t_{1} t1+e>t1 , 所以 t 1 + e ∉ S t_{1} +e \notin S t1+e/S (不要求 t 1 + e ∈ T t_{1} + e \in T t1+eT).

由以上两点和归纳公理可以推出: 必定存在 s 0 ∈ S s_{0} \in S s0S, 使得 s 0 + e ∉ S s_{0} +e \notin S s0+e/S,

假设不存在 s 0 ∈ S s_{0} \in S s0S, 使得 s 0 + e ∉ S s_{0} +e \notin S s0+e/S, 即对任意的 s ∈ S s\in S sS, s + e ∈ S s +e \in S s+eS,

结合上述的 e ∈ S e\in S eS, 由归纳公理可以得出 S = N S = N S=N.

由上述的第二点可以得到, t 1 + e ∉ S t_{1} + e \notin S t1+e/S t 1 + e ∈ N t_{1} + e \in N t1+eN, 矛盾,

所以得证: 必定存在 s 0 ∈ S s_{0} \in S s0S, 使得 s 0 + e ∉ S s_{0} +e \notin S s0+e/S.

接下来证明 s 0 ∈ T s_{0} \in T s0T,

假设 s 0 ∉ T s_{0}\notin T s0/T, 即 ∀ t ∈ T \forall t \in T tT, 都有 s 0 ≠ t s_{0} \neq t s0=t. 由于 s 0 ∈ S s_{0}\in S s0S, 所以 ∀ t ∈ T \forall t \in T tT, 都有 s 0 ≤ t s_{0} \leq t s0t

所以 ∀ t ∈ T \forall t \in T tT, 都有 s 0 < t s_{0}<t s0<t. 所以 ∀ t ∈ T \forall t \in T tT, 都有 s 0 + e ≤ t s_{0} + e\leq t s0+et.

所以 s 0 + e ∈ S s_{0} + e \in S s0+eS, 矛盾,

所以得证 s 0 ∈ T s_{0} \in T s0T.

t 0 = s 0 t_{0} = s_{0} t0=s0. 即得证最小自然数原理.

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值