自然数e的存在性证明.

e 是如下定义的.

e = \lim\limits_{n\rightarrow\infty}(1+\frac{1}{n})^{n}

要证明e是存在的, 需要证明2步,

1. 它有上界.

2. 对于n>0, n\epsilon \mathbb{N},函数 ({1+\frac{1}{n}})^{n}是单调递增的.

一: 证明它有上界:

我们设函数 y=f(x) =  \lim\limits_{x\rightarrow\infty}(1+\frac{1}{x})^{x}

把后面的式子按二项式展开.

(1+\frac{1}{n})^{n}=1+\mathbb{C}\binom{1}{n}\frac{1}{n}+\mathbb{C}\binom{2}{n}\frac{1}{n^{2}}+\cdots +\mathbb{C}\binom{k}{n}\frac{1}{n^{k}}+\cdots +\mathbb{C}\binom{n}{n}\frac{1}{n^{n}}

1+\frac{\mathbb{P}\binom{1}{n}}{1!}\frac{1}{n} +\frac{\mathbb{P}\binom{2}{n}}{2!}\frac{1}{n^{2}}+\cdots +\frac{\mathbb{P}\binom{k}{n}}{k!}\frac{1}{n^{k}}+\cdots +\frac{\mathbb{P}\binom{n}{n}}{n!}\frac{1}{n^{n}}

1+1+\frac{1}{2!}+\cdots +\frac{1}{k!}+\cdots +\frac{1}{n!}

上面这个数列是一个收敛很快的数列, 所以有上界,证明如下: (比日取其半,万世不结的序列还快速收敛)

< 1+1+\frac{1}{2^{1}}+\cdots +\frac{1}{2^{k-1}}+\cdots +\frac{1}{2^{n-1}}  < 3

后面那些小数加起来也不超过1(按2的n次方衰减是收敛的,这个证明很简单,此处就忽略证明了),如此证明 了3 是它的一个上界!

同时也证明了2是它的一个下界(忽略后面的正的小数项). 证递增时会用到它.

二: 证明该函数是单调递增的.

考察 y=g(x)=ln(f(x))= ln(1+\frac{1}{n})^{n}nln(\frac{1+n}{n})=n(ln(1+n)-ln(n)))=nln(1+n)-nln(n)

当n 趋于无穷时, y 是>0 的.

再对y 求导数:

对该函数求导:

{y}'=\frac{n}{1+n}+ln(1+n)-(\frac{n}{n}+ln(n))=ln(\frac{1+n}{n})-\frac{1}{n+1}

=ln(1+\frac{1}{n})-\frac{1}{n+1}= \frac{n ln(1+\frac{1}{n}) }{n} -\frac{1}{n+1} > \frac{2}{n} - \frac{1}{n} = \frac{1}{n} > 0

这里我们又用到了 \lim\limits_{n\rightarrow\infty}(1+\frac{1}{n})^{n} 它的下界大于2 , 这不是循环调用,我们只用了它的下界2.

既然导数>0, 所以该函数递增. 该函数是个对数函数, 对数函数是递增的,则原函数也是递增的(n>0时),由此证明了(1+\frac{1}{n})^{n}是递增的.

结合1,2, 知道这个极限\lim\limits_{n\rightarrow\infty}(1+\frac{1}{n})^{n} 确实是存在的. 所以我们大大方方的把它定为e.

这个数在求极限中,在求导数,积分中会大显身手的! 它就是这么自然的出现的,是一个极限数,所以人们叫它自然数e.

还觉得自然数e来的不够自然? 好,再列举一个重要的极限 \lim\limits_{x\rightarrow0}\frac{sin(x)}{x} = 1 , 这也是一个0/0极限, 尽管它也很重要,不过由于它的比值是1,就不那么特殊了,

因为我们早就认识1了. 而当我们见到e时, 确实使我们吃了一惊, 不可小觑, 这是一个新成员来到了!

 

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值