e 是如下定义的.
e =
要证明e是存在的, 需要证明2步,
1. 它有上界.
2. 对于n>0, ,函数
是单调递增的.
一: 证明它有上界:
我们设函数 y=f(x) =
把后面的式子按二项式展开.
=
<
上面这个数列是一个收敛很快的数列, 所以有上界,证明如下: (比日取其半,万世不结的序列还快速收敛)
< < 3
后面那些小数加起来也不超过1(按2的n次方衰减是收敛的,这个证明很简单,此处就忽略证明了),如此证明 了3 是它的一个上界!
同时也证明了2是它的一个下界(忽略后面的正的小数项). 证递增时会用到它.
二: 证明该函数是单调递增的.
考察 y=g(x)=ln(f(x))= =
当n 趋于无穷时, y 是>0 的.
再对y 求导数:
对该函数求导:
这里我们又用到了 它的下界大于2 , 这不是循环调用,我们只用了它的下界2.
既然导数>0, 所以该函数递增. 该函数是个对数函数, 对数函数是递增的,则原函数也是递增的(n>0时),由此证明了是递增的.
结合1,2, 知道这个极限 确实是存在的. 所以我们大大方方的把它定为e.
这个数在求极限中,在求导数,积分中会大显身手的! 它就是这么自然的出现的,是一个极限数,所以人们叫它自然数e.
还觉得自然数e来的不够自然? 好,再列举一个重要的极限 , 这也是一个0/0极限, 尽管它也很重要,不过由于它的比值是1,就不那么特殊了,
因为我们早就认识1了. 而当我们见到e时, 确实使我们吃了一惊, 不可小觑, 这是一个新成员来到了!