leetcode322. 零钱兑换 经典dp 凑硬币问题

给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。

示例 1:

输入: coins = [1, 2, 5], amount = 11
输出: 3
解释: 11 = 5 + 5 + 1

示例 2:

输入: coins = [2], amount = 3
输出: -1

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/coin-change
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。




刘汝佳蓝书P60页例题

  • d p [ i ] dp[i] dp[i]表示凑出   i   ~i~  i 需要的最少硬币
  • 转移方程 : d p [ i ] = m i n ( − ∞ , d p [ i − V j ] ) , V j 是 每 个 硬 币 的 值 dp[i]=min(-\infty,dp[i-V_j]),V_j是每个硬币的值 dp[i]=min(,dp[iVj]),Vj
  • 边界条件 : d p [ 0 ] = 0 dp[0]=0 dp[0]=0
#define MAXN (int(1e6))
int dp[MAXN];
#define INF (0x3f3f3f3f)

class Solution {
public:
    int coinChange(vector<int>& a, int S) {
        int n = a.size();
        memset(dp, INF, sizeof(dp)); //初始化为正无穷
        dp[0] = 0;
        for(int i=0; i<=S; i++) {
            for(int j=0; j<n; j++) {
                if(i >= a[j])
                    dp[i] = min(dp[i], dp[i-a[j]]+1);
            }
        }
        return dp[S]==INF ? -1 : dp[S];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值