leetcode 硬币组合题

该博客介绍了一种使用动态规划算法解决找零问题的方法,具体场景是给定四种不同面值的硬币(25分、10分、5分和1分),计算凑成指定金额n分的不同组合数。示例展示了如何编写代码实现这一算法,并对结果进行模运算以处理大数。动态规划策略是通过遍历所有可能的硬币组合来构建解决方案。
摘要由CSDN通过智能技术生成

硬币。给定数量不限的硬币,币值为25分、10分、5分和1分,编写代码计算n分有几种表示法。(结果可能会很大,你需要将结果模上1000000007)

示例1:

 输入: n = 5
 输出:2
 解释: 有两种方式可以凑成总金额:
5=5
5=1+1+1+1+1

示例2:

 输入: n = 10
 输出:4
 解释: 有四种方式可以凑成总金额:
10=10
10=5+5
10=5+1+1+1+1+1
10=1+1+1+1+1+1+1+1+1+1

解题思路同518:使用动态规划

class Solution:
    def waysToChange(self, n: int) -> int:
        dp = [1] + [0] * n
        coins = [1, 5, 10, 25]
        for coin in coins:
            for i in range(coin, n + 1):
                dp[i] = dp[i] + dp[i - coin]
        return dp[-1] % 1000000007

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值