概率论重修笔记 6二维连续型.md

联合概率密度性质

  • ∫ − ∞ ∞ ∫ − ∞ ∞ f ( x , y ) d x d y = = 1 \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)dxdy==1 f(x,y)dxdy==1
  • P { X , Y ) 属 于 D } = 求 区 间 D 的 二 重 积 分 ∫ ∫ f ( x , y ) d y P\{X,Y)属于D\}=求区间D的二重积分\int\int f(x,y)dy P{X,Y)D}=Df(x,y)dy

边缘概率密度

  • f X ( x ) = ∫ − ∞ ∞ f ( x , y ) d y f_X(x)=\int_{-\infty}^{\infty}f(x,y)dy fX(x)=f(x,y)dy
  • f Y ( y ) = ∫ − ∞ ∞ f ( x , y ) d x f_Y(y)=\int_{-\infty}^{\infty}f(x,y)dx fY(y)=f(x,y)dx

条件概率密度

  • f X ∣ Y ( x ∣ y ) = f ( x , y ) f Y ( y ) f_{X|Y}(x|y)=\frac{f(x,y)}{f_{Y}(y)} fXY(xy)=fY(y)f(x,y)
  • f Y ∣ X ( y ∣ x ) = f ( x , y ) f X ( x ) f_{Y|X}(y|x)=\frac{f(x,y)}{f_X{(x)}} fYX(yx)=fX(x)f(x,y)

独立性

  • f ( x , y ) = = f X ( x ) ∗ f Y ( y ) 时 独 立 f(x,y)==f_X(x)*f_Y(y)时独立 f(x,y)==fX(x)fY(y)

课程6 [1分06秒]

设二维随机变量 ( X , Y ) (X,Y) (X,Y)的概率密度
f ( x ) = { C x y 0 < x < 1 , 0 < y < 1 0 其 他 f(x)= \begin{cases} Cxy& 0<x<1,0<y<1\\ 0 & 其他 \end{cases} f(x)={Cxy00<x<1,0<y<1

  1. 求常数 C C C和概率 P { X + Y < 1 } P\{X+Y<1\} P{X+Y<1}(重点是二重积分的计算)
  2. ( X , Y ) (X,Y) (X,Y)的边缘概率密度
  3. 条件概率密度 f X ∣ Y ( x ∣ y ) f_{X|Y}(x|y) fXY(xy) f Y ∣ X ( y ∣ x ) f_{Y|X}(y|x) fYX(yx)
  4. 判定 X X X Y Y Y是否独立

画出图像[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-QSrxynOH-1593171745557)(./img/4.png)]

带入公式 ∫ − ∞ ∞ ∫ − ∞ ∞ f ( x , y ) d x d y = = 1 \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)dxdy==1 f(x,y)dxdy==1

x : 常 数 − > 常 数 , 即 0 − > 1 y : 函 数 − > 函 数 , 即 0 − > 1 x:常数->常数,即0->1\\y:函数->函数,即0->1 x:>,0>1y:>,0>1

∫ − ∞ ∞ d x ∫ − ∞ ∞ f ( x , y ) d y = = 1 = ∫ 0 1 d x ∫ 0 1 C x y d y = ∫ 0 1 1 2 ∗ C x y 2 ∣ 0 1 d x \int_{-\infty}^{\infty}dx\int_{-\infty}^{\infty}f(x,y)dy ==1\\=\int_{0}^{1}dx\int_{0}^{1}Cxydy\\=\int_{0}^{1}\frac{1}{2}*Cxy^2|_0^1dx dxf(x,y)dy==1=01dx01Cxydy=0121Cxy201dx

= ∫ 0 1 1 2 C x   d x = 1 4 C     所 以 C = 4 =\int_{0}^{1}\frac{1}{2}Cx~dx\\=\frac{1}{4}C~~~所以C=4 =0121Cx dx=41C   C=4

C = 4 C=4 C=4带入原 f ( x ) f(x) f(x)

在画出图像 P { X + Y < 1 } P\{X+Y<1\} P{X+Y<1}[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4jSv3SoG-1593171745559)(./img/5.png)]

x : 常 数 − > 常 数 , 即 0 − > 1 y : 函 数 − > 函 数 , 即 0 − > − x + 1 x:常数->常数,即0->1\\y:函数->函数,即0->-x+1 x:>,0>1y:>,0>x+1

求黑色块的积分即可

∫ 0 1 d x ∫ 0 − x + 1 4 x y   d y = ∫ 0 1 2 x y 2 ∣ 0 − x + 1   d x = 1 / 6 \int_{0}^1dx\int_0^{-x+1}4xy~dy\\=\int_{0}^1{2xy^2|_0^{-x+1}}~dx\\=1/6 01dx0x+14xy dy=012xy20x+1 dx=1/6

( X , Y ) (X,Y) (X,Y)的边缘概率密度

f X ( x ) 竖 看 f_X(x)竖看 fX(x) [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zfbOR1LA-1593171745562)(./img/6.png)]

得到范围 x : 常 数 到 常 数 ( 0 到 1 ) y : 函 数 导 函 数 ( 0 到 1 ) x:常数到常数(0到1)\\y:函数导函数(0到1) x:(01)y:(01)

f X ( x ) f_X(x) fX(x) = ∫ − ∞ ∞ f ( x , y )   d y = ∫ 0 1 4 x y   d y = 2 x =\int_{-\infty}^{\infty}f(x,y)~dy\\=\int_{0}^{1}4xy~dy\\=2x =f(x,y) dy=014xy dy=2x

f X ( x ) = { 2 x 0 < x < 1 0 其 他 f_X{(x)}=\begin{cases} 2x&0<x<1\\0&其他\end{cases} fX(x)={2x00<x<1

f Y ( y ) = ∫ − ∞ ∞ f ( x , y )   d x f_Y(y)=\int_{-\infty}^{\infty}f(x,y)~dx fY(y)=f(x,y) dx

x x x方向看 x : 0 到 1 y : 0 到 1 x:0到1\\y:0到1 x:01y:01

f Y ( y ) = ∫ 0 1 4 x y   d x = 2 y f_Y{(y)}=\int_{0}^{1}4xy~dx=2y fY(y)=014xy dx=2y

f Y y = { 2 y 0 < y < 1 0 其 他 f_Y{y}=\begin{cases}2y&0<y<1\\0&其他\end{cases} fYy={2y00<y<1

条件概率密度 f X ∣ Y ( x ∣ y ) f_{X|Y}(x|y) fXY(xy) f Y ∣ X ( y ∣ x ) f_{Y|X}(y|x) fYX(yx)

f X ∣ Y ( x ∣ y ) f_{X|Y}(x|y) fXY(xy) = f ( x , y ) f Y ( y ) = 4 x y 2 y = { 2 x 0 < x < 1 , 0 < 1 < y 0 其 他 =\frac{f(x,y)}{f_Y(y)}=\frac{4xy}{2y}=\begin{cases}2x & 0<x<1,0<1<y\\ 0 & 其他 \end{cases} =fY(y)f(x,y)=2y4xy={2x00<x<1,0<1<y

判定是否独立: 联合概率密度=边缘之积

f ( x , y ) = 4 x y f(x,y)=4xy f(x,y)=4xy

f X ( x ) ∗ f Y ( y ) = 2 x ∗ 2 y       相 等 所 以 独 立 f_X(x)*f_Y(y)=2x*2y ~~~~~相等所以独立 fX(x)fY(y)=2x2y     

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值