leetcode 529. 扫雷游戏 经典bfs或dfs 好题

  1. 扫雷游戏

让我们一起来玩扫雷游戏!

给定一个代表游戏板的二维字符矩阵。 ‘M’ 代表一个未挖出的地雷,‘E’ 代表一个未挖出的空方块,‘B’ 代表没有相邻(上,下,左,右,和所有4个对角线)地雷的已挖出的空白方块,数字(‘1’ 到 ‘8’)表示有多少地雷与这块已挖出的方块相邻,‘X’ 则表示一个已挖出的地雷。

现在给出在所有未挖出的方块中(‘M’或者’E’)的下一个点击位置(行和列索引),根据以下规则,返回相应位置被点击后对应的面板:

如果一个地雷('M')被挖出,游戏就结束了- 把它改为 'X'。
如果一个没有相邻地雷的空方块('E')被挖出,修改它为('B'),并且所有和其相邻的未挖出方块都应该被递归地揭露。
如果一个至少与一个地雷相邻的空方块('E')被挖出,修改它为数字('1'到'8'),表示相邻地雷的数量。
如果在此次点击中,若无更多方块可被揭露,则返回面板。

示例 1:

输入:

[[‘E’, ‘E’, ‘E’, ‘E’, ‘E’],
[‘E’, ‘E’, ‘M’, ‘E’, ‘E’],
[‘E’, ‘E’, ‘E’, ‘E’, ‘E’],
[‘E’, ‘E’, ‘E’, ‘E’, ‘E’]]

Click : [3,0]

输出:

[[‘B’, ‘1’, ‘E’, ‘1’, ‘B’],
[‘B’, ‘1’, ‘M’, ‘1’, ‘B’],
[‘B’, ‘1’, ‘1’, ‘1’, ‘B’],
[‘B’, ‘B’, ‘B’, ‘B’, ‘B’]]


扫雷游戏可dfs或者bfs

  • 先检查当前递归节点是否是周围埋雷的点,是就标记个数并停止递归
  • 不是,就向下递归她的8个方向
    void dfs(vector<vector<char> >& mtx, int r, int c) {
        int cnt = 0;
        for(int i=0; i<8; i++) {
            int nr = r + dr[i],
                nc = c + dc[i];
            if(nr<0 || nc<0 || nr>=n || nc>=m) continue ;
            cnt += (mtx[nr][nc] == 'M');
        }
        if(cnt) { //周围有雷,标记并退出
            mtx[r][c] = '0' + cnt;
            return ;
        }
        mtx[r][c] = 'B';
        for(int i=0; i<8; i++) {
            int nr = r + dr[i],
                nc = c + dc[i];
            if(nr<0 || nc<0 || nr>=n || nc>=m) continue ;
            if(mtx[nr][nc] == 'E') dfs(mtx, nr, nc);
        }
    }

bfs思路是一致的

        queue<Node> q;
        q.push( {v[0], v[1]} );
        memset(vis, false, sizeof(vis));
        while(!q.empty()) {
            Node& now = q.front();
            vis[now.r][now.c] = true;
            int cnt = 0;
            for(int i=0; i<8; i++) {
                int nr = now.r + dr[i],
                    nc = now.c + dc[i];
                if(nr<0 || nc<0 || nr>=n || nc>=m) continue ;
                cnt += (mtx[nr][nc] == 'M');
            }
            if(cnt) {
                mtx[now.r][now.c] = '0' + cnt;
                goto POPIT;
            }
            mtx[now.r][now.c] = 'B';
            for(int i=0; i<8; i++) {
                int nr = now.r + dr[i],
                    nc = now.c + dc[i];
                if(nr<0 || nc<0 || nr>=n || nc>=m) continue ;
                if(!vis[nr][nc] && mtx[nr][nc]=='E') {
                    vis[nr][nc] = true;
                    q.push( {nr, nc} );
                }
            }
            POPIT : 
            q.pop();
        }

完整代码

#define debug
#ifdef debug
#include <time.h>
#endif

#include <iostream>
#include <algorithm>
#include <vector>
#include <string.h>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <math.h>

#define MAXN ((int)1e5+7)
#define ll long long int
#define INF (0x7f7f7f7f)
#define fori(lef, rig) for(int i=lef; i<=rig; i++)
#define forj(lef, rig) for(int j=lef; j<=rig; j++)
#define fork(lef, rig) for(int k=lef; k<=rig; k++)
#define QAQ (0)

using namespace std;

#define show(x...) \
    do { \
       cout << "\033[31;1m " << #x << " -> "; \
       err(x); \
    } while (0)

void err() { cout << "\033[39;0m" << endl; }
template<typename T, typename... A>
void err(T a, A... x) { cout << a << ' '; err(x...); }

namespace FastIO{

    char print_f[105];
    void read() {}
    void print() { putchar('\n'); }

    template <typename T, typename... T2>
       inline void read(T &x, T2 &... oth) {
           x = 0;
           char ch = getchar();
           ll f = 1;
           while (!isdigit(ch)) {
               if (ch == '-') f *= -1; 
               ch = getchar();
           }
           while (isdigit(ch)) {
               x = x * 10 + ch - 48;
               ch = getchar();
           }
           x *= f;
           read(oth...);
       }
    template <typename T, typename... T2>
       inline void print(T x, T2... oth) {
           ll p3=-1;
           if(x<0) putchar('-'), x=-x;
           do{
                print_f[++p3] = x%10 + 48;
           } while(x/=10);
           while(p3>=0) putchar(print_f[p3--]);
           putchar(' ');
           print(oth...);
       }
} // namespace FastIO
using FastIO::print;
using FastIO::read;

int n, m, Q, K;

int dr[] = { 1, -1, 0, 0, 1, 1, -1, -1 },
    dc[] = { 0, 0, 1, -1, 1, -1, 1, -1 };
int vis[64][64], timer;

struct Node {
    int r, c;
} ;

class Solution {
public:

    void dfs(vector<vector<char> >& mtx, int r, int c) {
        int cnt = 0;
        for(int i=0; i<8; i++) {
            int nr = r + dr[i],
                nc = c + dc[i];
            if(nr<0 || nc<0 || nr>=n || nc>=m) continue ;
            cnt += (mtx[nr][nc] == 'M');
        }
        if(cnt) {
            mtx[r][c] = '0' + cnt;
            return ;
        }
        mtx[r][c] = 'B';
        for(int i=0; i<8; i++) {
            int nr = r + dr[i],
                nc = c + dc[i];
            if(nr<0 || nc<0 || nr>=n || nc>=m) continue ;
            if(mtx[nr][nc] == 'E') dfs(mtx, nr, nc);
        }
    }

    vector<vector<char>> updateBoard(vector<vector<char>>& mtx, vector<int>& v) {
        n = mtx.size(), m = mtx[0].size();
        if(mtx[v[0]][v[1]] == 'M') {
            mtx[v[0]][v[1]] = 'X';
            return mtx;
        }
        if(mtx[v[0]][v[1]] != 'E') return mtx;
#if 1
        queue<Node> q;
        q.push( {v[0], v[1]} );
        memset(vis, false, sizeof(vis));
        while(!q.empty()) {
            Node& now = q.front();
            vis[now.r][now.c] = true;
            int cnt = 0;
            for(int i=0; i<8; i++) {
                int nr = now.r + dr[i],
                    nc = now.c + dc[i];
                if(nr<0 || nc<0 || nr>=n || nc>=m) continue ;
                cnt += (mtx[nr][nc] == 'M');
            }
            if(cnt) {
                mtx[now.r][now.c] = '0' + cnt;
                goto POPIT;
            }
            mtx[now.r][now.c] = 'B';
            for(int i=0; i<8; i++) {
                int nr = now.r + dr[i],
                    nc = now.c + dc[i];
                if(nr<0 || nc<0 || nr>=n || nc>=m) continue ;
                if(!vis[nr][nc] && mtx[nr][nc]=='E') {
                    vis[nr][nc] = true;
                    q.push( {nr, nc} );
                }
            }
            POPIT : 
            q.pop();
        }
#else
        dfs(mtx, v[0], v[1]);
#endif
        return mtx;
    }
};

#ifdef debug
signed main() {

    vector<vector<char> > vec = {{'E', 'E', 'E', 'E', 'E'},
                                 {'E', 'E', 'M', 'E', 'E'}, 
                                 {'E', 'E', 'E', 'E', 'E'}, 
                                 {'E', 'E', 'E', 'E', 'E'}}; 
    Solution s;
    vector<int> pos = { 3, 0 };
    vec = s.updateBoard(vec, pos);
    for(int i=0; i<vec.size(); i++) {
        for(int j=0; j<vec[i].size(); j++) printf("[%c] ", vec[i][j]);
        printf("\n");
    }





   return 0;
}
#endif 




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值