洛必达法则:当x→x0{x\rightarrow x0}x→x0时,如果f(x)=0,g(x)=0,那么
limx→x0f(x)g(x)=limx→x0f′(x)g′(x)\lim_{x\rightarrow x0}\frac{f(x)}{g(x)}=\lim_{x\rightarrow x0}\frac{f'(x)}{g'(x)}x→x0limg(x)f(x)=x→x0limg′(x)f′(x)
假设有任意两个函数,如图:

任取两点(a,b),对应图中的(4,6),与g(x),f(x)分别相交于4个点。记f(x)截线的斜率为k1,g(x)截线的斜率为k2,则有:
k1=f(6)−f(4)6−4,k2=g(6)−g(4)6−4k1=\frac{f(6)-f(4)}{6-4} ,k2=\frac{g(6)-g(4)}{6-4}k1=6−4f(6)−f(4),k2=6−4g(6)−g(4)
两式相除得:
k1k2=f(6)−f(4)g(6)−g(4)=f(b)−f(a)g(b)−g(a)\frac{k1}{k2}=\frac{f(6)-f(4)}{g(6)-g(4)}=\frac{f(b)-f(a)}{g(b)-g(a)} k2k1=g(6)−g(4)f(6)−f(4)=g(b)−g(a)f(b)−f(a)
对f(x)来说,在(a,b)区间中至少能找到一点ε1使f′(ε1)=k1f'(\varepsilon 1 )=k1f′(ε1)=k1
对g(x)来说,在(a,b)区间中至少能找到一点ε2使g′(ε2)=k2g'(\varepsilon 2 )=k2g′(ε2)=k2
这就是所谓的拉格朗日中值定理,从图像观察就能理解这个结果。
结合上述定理,在(a,b)中总能找到ε1,ε2使下列等式成立:
f′(ε1)g′(ε2)=f(b)−f(a)g(b)−g(a)\frac{f'(\varepsilon 1 )}{g'(\varepsilon 2)}=\frac{f(b)-f(a)}{g(b)-g(a)} g′(ε2)f′(ε1)=g(b)−g(a)f(b)−f(a)
上述表达式就是所谓的柯西中值定理。
再进一步,如果limx→af(x)=0,limx→ag(x)=0\lim_{x\rightarrow a}f(x)=0,\lim_{x\rightarrow a}g(x)=0limx→af(x)=0,limx→ag(x)=0,那么上式可转化为:
f′(ε1)g′(ε2)=f(b)−0g(b)−0=f(b)g(b)\frac{f'(\varepsilon 1 )}{g'(\varepsilon 2)}=\frac{f(b)-0}{g(b)-0}=\frac{f(b)}{g(b)} g′(ε2)f′(ε1)=g(b)−0f(b)−0=g(b)f(b)
因为a,b是任取的,所以在取得足够小的情况下,有:
limx→bf(x)=0,limx→bg(x)=0\lim_{x\rightarrow b}f(x)=0,\lim_{x\rightarrow b}g(x)=0x→blimf(x)=0,x→blimg(x)=0
ε1,ε2在(a,b)中,a,b又是足够小的,所以可以近似认为ε1=ε2=a=b.
因此,当limx→bf(x)=0,limx→bg(x)=0\lim_{x\rightarrow b}f(x)=0,\lim_{x\rightarrow b}g(x)=0limx→bf(x)=0,limx→bg(x)=0时,有:
limx→bf(b)g(b)=f′(b)g′(b)\lim_{x\rightarrow b}\frac{f(b)}{g(b)} =\frac{f'(b)}{g'(b)}x→blimg(b)f(b)=g′(b)f′(b)
这就是所谓的洛必达法则,在0/0 ∞/∞类型的求导中可以很方便的计算出结果
1653

被折叠的 条评论
为什么被折叠?



