洛必达法则:当 x → x 0 {x\rightarrow x0} x→x0时,如果f(x)=0,g(x)=0,那么
lim x → x 0 f ( x ) g ( x ) = lim x → x 0 f ′ ( x ) g ′ ( x ) \lim_{x\rightarrow x0}\frac{f(x)}{g(x)}=\lim_{x\rightarrow x0}\frac{f'(x)}{g'(x)} x→x0limg(x)f(x)=x→x0limg′(x)f′(x)
假设有任意两个函数,如图:
任取两点(a,b),对应图中的(4,6),与g(x),f(x)分别相交于4个点。记f(x)截线的斜率为k1,g(x)截线的斜率为k2,则有:
k
1
=
f
(
6
)
−
f
(
4
)
6
−
4
,
k
2
=
g
(
6
)
−
g
(
4
)
6
−
4
k1=\frac{f(6)-f(4)}{6-4} ,k2=\frac{g(6)-g(4)}{6-4}
k1=6−4f(6)−f(4),k2=6−4g(6)−g(4)
两式相除得:
k
1
k
2
=
f
(
6
)
−
f
(
4
)
g
(
6
)
−
g
(
4
)
=
f
(
b
)
−
f
(
a
)
g
(
b
)
−
g
(
a
)
\frac{k1}{k2}=\frac{f(6)-f(4)}{g(6)-g(4)}=\frac{f(b)-f(a)}{g(b)-g(a)}
k2k1=g(6)−g(4)f(6)−f(4)=g(b)−g(a)f(b)−f(a)
对f(x)来说,在(a,b)区间中至少能找到一点ε1使
f
′
(
ε
1
)
=
k
1
f'(\varepsilon 1 )=k1
f′(ε1)=k1
对g(x)来说,在(a,b)区间中至少能找到一点ε2使
g
′
(
ε
2
)
=
k
2
g'(\varepsilon 2 )=k2
g′(ε2)=k2
这就是所谓的拉格朗日中值定理,从图像观察就能理解这个结果。
结合上述定理,在(a,b)中总能找到ε1,ε2使下列等式成立:
f
′
(
ε
1
)
g
′
(
ε
2
)
=
f
(
b
)
−
f
(
a
)
g
(
b
)
−
g
(
a
)
\frac{f'(\varepsilon 1 )}{g'(\varepsilon 2)}=\frac{f(b)-f(a)}{g(b)-g(a)}
g′(ε2)f′(ε1)=g(b)−g(a)f(b)−f(a)
上述表达式就是所谓的柯西中值定理。
再进一步,如果
lim
x
→
a
f
(
x
)
=
0
,
lim
x
→
a
g
(
x
)
=
0
\lim_{x\rightarrow a}f(x)=0,\lim_{x\rightarrow a}g(x)=0
limx→af(x)=0,limx→ag(x)=0,那么上式可转化为:
f
′
(
ε
1
)
g
′
(
ε
2
)
=
f
(
b
)
−
0
g
(
b
)
−
0
=
f
(
b
)
g
(
b
)
\frac{f'(\varepsilon 1 )}{g'(\varepsilon 2)}=\frac{f(b)-0}{g(b)-0}=\frac{f(b)}{g(b)}
g′(ε2)f′(ε1)=g(b)−0f(b)−0=g(b)f(b)
因为a,b是任取的,所以在取得足够小的情况下,有:
lim
x
→
b
f
(
x
)
=
0
,
lim
x
→
b
g
(
x
)
=
0
\lim_{x\rightarrow b}f(x)=0,\lim_{x\rightarrow b}g(x)=0
x→blimf(x)=0,x→blimg(x)=0
ε1,ε2在(a,b)中,a,b又是足够小的,所以可以近似认为ε1=ε2=a=b.
因此,当
lim
x
→
b
f
(
x
)
=
0
,
lim
x
→
b
g
(
x
)
=
0
\lim_{x\rightarrow b}f(x)=0,\lim_{x\rightarrow b}g(x)=0
limx→bf(x)=0,limx→bg(x)=0时,有:
lim
x
→
b
f
(
b
)
g
(
b
)
=
f
′
(
b
)
g
′
(
b
)
\lim_{x\rightarrow b}\frac{f(b)}{g(b)} =\frac{f'(b)}{g'(b)}
x→blimg(b)f(b)=g′(b)f′(b)
这就是所谓的洛必达法则,在0/0 ∞/∞类型的求导中可以很方便的计算出结果