对洛必达法则的理解

洛必达法则:当 x → x 0 {x\rightarrow x0} xx0时,如果f(x)=0,g(x)=0,那么

lim ⁡ x → x 0 f ( x ) g ( x ) = lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) \lim_{x\rightarrow x0}\frac{f(x)}{g(x)}=\lim_{x\rightarrow x0}\frac{f'(x)}{g'(x)} xx0limg(x)f(x)=xx0limg(x)f(x)

假设有任意两个函数,如图:
在这里插入图片描述
任取两点(a,b),对应图中的(4,6),与g(x),f(x)分别相交于4个点。记f(x)截线的斜率为k1,g(x)截线的斜率为k2,则有:
k 1 = f ( 6 ) − f ( 4 ) 6 − 4 , k 2 = g ( 6 ) − g ( 4 ) 6 − 4 k1=\frac{f(6)-f(4)}{6-4} ,k2=\frac{g(6)-g(4)}{6-4} k1=64f(6)f(4)k2=64g(6)g(4)
两式相除得:
k 1 k 2 = f ( 6 ) − f ( 4 ) g ( 6 ) − g ( 4 ) = f ( b ) − f ( a ) g ( b ) − g ( a ) \frac{k1}{k2}=\frac{f(6)-f(4)}{g(6)-g(4)}=\frac{f(b)-f(a)}{g(b)-g(a)} k2k1=g(6)g(4)f(6)f(4)=g(b)g(a)f(b)f(a)

对f(x)来说,在(a,b)区间中至少能找到一点ε1使 f ′ ( ε 1 ) = k 1 f'(\varepsilon 1 )=k1 f(ε1)=k1
对g(x)来说,在(a,b)区间中至少能找到一点ε2使 g ′ ( ε 2 ) = k 2 g'(\varepsilon 2 )=k2 g(ε2)=k2
这就是所谓的拉格朗日中值定理,从图像观察就能理解这个结果。
结合上述定理,在(a,b)中总能找到ε1,ε2使下列等式成立:
f ′ ( ε 1 ) g ′ ( ε 2 ) = f ( b ) − f ( a ) g ( b ) − g ( a ) \frac{f'(\varepsilon 1 )}{g'(\varepsilon 2)}=\frac{f(b)-f(a)}{g(b)-g(a)} g(ε2)f(ε1)=g(b)g(a)f(b)f(a)
上述表达式就是所谓的柯西中值定理
再进一步,如果 lim ⁡ x → a f ( x ) = 0 , lim ⁡ x → a g ( x ) = 0 \lim_{x\rightarrow a}f(x)=0,\lim_{x\rightarrow a}g(x)=0 limxaf(x)=0,limxag(x)=0,那么上式可转化为:
f ′ ( ε 1 ) g ′ ( ε 2 ) = f ( b ) − 0 g ( b ) − 0 = f ( b ) g ( b ) \frac{f'(\varepsilon 1 )}{g'(\varepsilon 2)}=\frac{f(b)-0}{g(b)-0}=\frac{f(b)}{g(b)} g(ε2)f(ε1)=g(b)0f(b)0=g(b)f(b)
因为a,b是任取的,所以在取得足够小的情况下,有:
lim ⁡ x → b f ( x ) = 0 , lim ⁡ x → b g ( x ) = 0 \lim_{x\rightarrow b}f(x)=0,\lim_{x\rightarrow b}g(x)=0 xblimf(x)=0,xblimg(x)=0
ε1,ε2在(a,b)中,a,b又是足够小的,所以可以近似认为ε1=ε2=a=b.
因此,当 lim ⁡ x → b f ( x ) = 0 , lim ⁡ x → b g ( x ) = 0 \lim_{x\rightarrow b}f(x)=0,\lim_{x\rightarrow b}g(x)=0 limxbf(x)=0,limxbg(x)=0时,有:
lim ⁡ x → b f ( b ) g ( b ) = f ′ ( b ) g ′ ( b ) \lim_{x\rightarrow b}\frac{f(b)}{g(b)} =\frac{f'(b)}{g'(b)} xblimg(b)f(b)=g(b)f(b)
这就是所谓的洛必达法则,在0/0 ∞/∞类型的求导中可以很方便的计算出结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值