【数学笔记】洛必达法则

洛必达法则是用来求一个函数极限的法则。

洛必达法则的引入

lim ⁡ x → 0 sin ⁡ x x \lim_{x \to 0} \frac{\sin x}{x} x0limxsinx

分子的极限是 sin ⁡ 0 = 0 \sin 0=0 sin0=0,分母的极限是 0 0 0,得出了 0 0 \frac{0}{0} 00的结果,怎么办捏?

我们当然可以用夹逼定理等很多种方法求得答案,但是用洛必达法则比较简单。

lim ⁡ x → 0 sin ⁡ x x = lim ⁡ x → 0 ( sin ⁡ x ) ′ x ′ = lim ⁡ x → 0 cos ⁡ x 1 = 1 \lim_{x \to 0} \frac{\sin x}{x}=\lim_{x \to 0} \frac{(\sin x){}' }{x'}=\lim_{x \to 0} \frac{\cos x}{1}=1 x0limxsinx=x0limx(sinx)=x0lim1cosx=1

你可能已经看明白了,就是分数上下同时求导后的极限,和原函数的极限是相同的。

洛必达法则真的这么神奇吗?什么函数都能这么求吗?

未定式

0/0型和 ∞ / ∞ \infty/\infty ∞/∞

刚刚的函数 lim ⁡ x → 0 sin ⁡ x x \lim_{x \to 0} \frac{\sin x}{x} x0limxsinx

上下都是无穷小,所以我们称它为 0 0 \frac{0}{0} 00型未定式,这种情况一般可以用洛必达法则来求。

还有一种情况是 ∞ ∞ \frac{ \infty}{ \infty} 型,也就是上下求完极限都是无穷大,这种情况也可以用洛必达法则来求。

lim ⁡ x → ∞ 3 x + 5 2 x + 1 \lim_{x \to \infty} \frac{3x+5}{2x+1} xlim2x+13x+5

我们使用洛必达法则,得到 lim ⁡ x → ∞ 3 x + 5 2 x + 1 = lim ⁡ x → ∞ 3 2 = 3 2 \lim_{x \to \infty} \frac{3x+5}{2x+1}=\lim_{x \to \infty} \frac{3}{2}=\frac{3}{2} xlim2x+13x+5=xlim23=23

0 0 \frac{0}{0} 00型和 ∞ ∞ \frac{\infty}{\infty} 型是洛必达法则最基础的两个形式,其他形式的极限大多可以化为这两种形式。

其他形式的未定式

刚刚说过,其他的未定式大多可以可以化为 0 0 \frac{0}{0} 00型和 ∞ ∞ \frac{\infty}{\infty} 型,下面举几个例子。

lim ⁡ x → 0 x ln ⁡ x \lim_{x\to 0} x\ln x x0limxlnx

左边的极限是 0 0 0,右边的极限是 − ∞ -\infty ,所以这是一个 0 ⋅ ∞ 0\cdot \infty 0型的未定式。

那么它怎么用洛必达法则呢?

我们可以把他变成 lim ⁡ x → 0 ln ⁡ x 1 x \lim_{x \to 0}\frac{\ln x}{\frac{1}{x}} x0limx1lnx

那么它就变成了一个 ∞ ∞ \frac{\infty}{\infty} 型未定式。

于是我们就可以使用洛必达法则 lim ⁡ x → 0 ln ⁡ x 1 x = lim ⁡ x → 0 1 x − 1 x 2 = lim ⁡ x → 0 − x = 0 \lim_{x \to 0}\frac{\ln x}{\frac{1}{x}}=\lim_{x \to 0} \frac{\frac{1}{x}}{-\frac{1}{x^2}}=\lim_{x \to 0}-x=0 x0limx1lnx=x0limx21x1=x0limx=0

这样就求得了它的极限。

类似的,像 0 0 , ∞ ∞ , ∞ − ∞ 0^0,\infty^{\infty},\infty-\infty 00,,等类型的未定式大多可以化为 0 0 \frac{0}{0} 00型或 ∞ ∞ \frac{\infty}{\infty} 型。

洛必达法则使用条件

洛必达法则是要求极限,所以你首先得保证上下求导后得出的函数有极限。

另外,既然要求导求极限,那么这个函数的上下肯定得有导数。

上面说的这两条在一般的题目中都是符合的,所以不用特殊记。

另外只有能化为 0 0 \frac{0}{0} 00型或 ∞ ∞ \frac{\infty}{\infty} 型的函数才能用洛必达法则,这一点经常错,如
lim ⁡ x → 0 e x − cos ⁡ x x 2 \lim_{x \to 0} \frac{e^x-\cos x}{x ^2} x0limx2excosx

先用一次洛必达,得到

lim ⁡ x → 0 e x + sin ⁡ x 2 x \lim_{x \to 0} \frac{e^x+\sin x}{2x} x0lim2xex+sinx

很多人做到这一步后可能会再用一次洛必达,得到
lim ⁡ x → 0 e x + cos ⁡ x 2 = 1 \lim_{x \to 0} \frac{e^x+\cos x}{2}=1 x0lim2ex+cosx=1

但是1不是这个函数的极限,哪里算错了呢?

原来,第二次洛必达得到的函数 e x + sin ⁡ x 2 x \frac{e^x+\sin x}{2x} 2xex+sinx已经不是 0 0 \frac{0}{0} 00型或 ∞ ∞ \frac{\infty}{\infty} 型未定式了,所以不能用洛必达法则。

所以,我们在多次洛必达的过程中,一定要检查函数的未定式形式,如果无法化为 0 0 \frac{0}{0} 00型或 ∞ ∞ \frac{\infty}{\infty} 型,就不能再算下去了!

习题

  1. lim ⁡ x → 0 x − sin ⁡ x x 2 sin ⁡ x \lim_{x \to 0} \frac{x-\sin x}{x^2\sin x} x0limx2sinxxsinx

观察到 sin ⁡ x ∼ x \sin x \sim x sinxx,所以原式可化为 lim ⁡ x → 0 x − sin ⁡ x x 3 \lim_{x \to 0} \frac{x-\sin x}{x^3} x0limx3xsinx

这个函数是 0 0 \frac{0}{0} 00型未定式,可以用洛必达法则。

lim ⁡ x → 0 x − sin ⁡ x x 3 = lim ⁡ x → 0 1 − cos ⁡ x 3 x 2 \lim_{x \to 0} \frac{x-\sin x}{x^3} =\lim_{x \to 0} \frac{1-\cos x}{3x^2} x0limx3xsinx=x0lim3x21cosx

我们发现,这个式子还是 0 0 \frac{0}{0} 00型未定式,所以继续洛。

得到 lim ⁡ x → 0 1 − cos ⁡ x 3 x 2 = lim ⁡ x → 0 sin ⁡ x 6 x = 1 6 \lim_{x \to 0} \frac{1-\cos x}{3x^2} =\lim_{x \to 0} \frac{\sin x}{6x} =\frac{1}{6} x0lim3x21cosx=x0lim6xsinx=61


  1. lim ⁡ x → ∞ ln ⁡ x x \lim_{x \to \infty} \frac{\ln x}{x} xlimxlnx

观察到函数为 ∞ ∞ \frac{\infty}{\infty} 型未定式,可以用洛必达法则。

lim ⁡ x → ∞ ln ⁡ x x = lim ⁡ x → ∞ 1 x 1 = lim ⁡ x → ∞ 1 x = 0 \lim_{x \to \infty} \frac{\ln x}{x} =\lim_{x \to \infty} \frac{\frac{1}{x}}{1}=\lim_{x \to \infty} \frac{1}{x}=0 xlimxlnx=xlim1x1=xlimx1=0

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值