概率论第5记:随机变量的独立性

本文探讨了随机变量独立性的定义与判断条件,包括离散型与连续型随机变量的情况,并详细解析了如何求解随机变量函数的分布,通过实例讲解了离散型与连续型随机变量函数分布的求解方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

设X,Y是两个随机变量,若对于任意实数a,b(a<b),c,d(c<d),事件{a<X≤b}和{c<Y≤d}相互独立,即P{a<X≤b,c<Y≤d}=P{a<X≤b}P{c<Y≤d},则称随机变量X,Y相互独立.
离散型随机变量X,Y相互独立的充分必要条件是对于(X,Y)所有可能取的数偶(xi,yj),有P{X=xi,Y=yj}=P{X=xi}P{Y=yj};
连续型随机变量X,Y相互独立的充分必要条件是f(x,y)=fX(x)fY(y),在平面上几乎处处[3]成立,其中f,fX,fY分别是(X,Y)的概率密度和边缘概率密度.
从上面的论述可以看出,X,Y相互独立,不仅概率密度具有如上公式特征,概率分布函数也具有这个特征。

随机变量的函数分布

这里研究的是已知随机变量X的概率密度函数,求以X为变量的Y=g(X)的分布。
离散型的由于不涉及求导,比较简单,举例说明
设随机变量X具有分布律如下:
在这里插入图片描述
求Y=X2+1的分布律.解 Y所有可能取的值为1,2,10,由P{Y=1}=P(X2+1=1)=P{X=0}=3/10,P{Y=2}=P{X2+1=2}=P{(X=1)∪(X=-1)}=P{X=1}+P{X=-1}=3/10,P{Y=10}=P{X2+1=10}=P{X=3}=4/10,即得Y的分布律为
在这里插入图片描述
连续型随机变量的求解方式一般是先构造Y的函数分布,然后对Y变换为X,得到X的概率分布函数,再对得到的X概率分布函数求导,即可得到Y的概率密度函数。
举例如下:
一食品工厂,一天的产量X(以吨计)具有概率密度
在这里插入图片描述
一天的产值是U=3X+1(以千元计),求U的概率密度fU(u).
分别记X,U的分布函数为FX(x)和FU(u).现在先来求FU(u)
FU(u)=P{U≤u}=P{3X+1≤u}=P{X≤(u-1)/3}=FX((u-1)/3),将FU(u)关于u求导数,由已知条件得U的概率密度:
在这里插入图片描述
再举一个例子:
设随机变量X具有概率密度fX(x)(-∞<x<∞),求Y=X2的概率密度fY(y).解 分别记X和Y的分布函数为FX(x)和FY(y).先来求FY(y).由于Y=X2≥0,因此当y<0时,FY(y)=P{Y≤y}=0,而当y>0时,有
在这里插入图片描述
将FY(y)关于y求导,得Y的概率密度
在这里插入图片描述
这部分有疑惑的童鞋请复习高数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值