通常用于切割图像数据。第一个代码例子请在本地运行
#例子1
import cv2
import tensorflow as tf
img = cv2.imread("02.jpg)
print(img)
cv2.imshow("inputaa", img)
import tensorflow as tf
sess=tf.InteractiveSession()
height, width = img.shape[:2]
for x in range(12):
cropped_image = tf.random_crop(img, (height / 4, width / 4,3))
cv2.imshow("output" + str(x), cropped_image.eval())
cv2.waitKey(0)
sess.close()
例子2
import tensorflow as tf
import numpy as np
#随机地将张量裁剪为给定的大小。
#以一致选择的偏移量将一个形状 size 部分从 value 中切出。需要的条件:value.shape >= size。
#如果大小不能裁剪,请传递该维度的完整大小。例如,可以使用 size = [crop_height, crop_width, 3] 裁剪 RGB 图像。
value=np.random.randint(1,9,[5,6])
sess=tf.Session()
print("带测试的value:\n",value)
size=[2,3]
print("切片大小:(2,3)")
print("切割随机切割结果1:\n",sess.run(tf.random_crop(value,size)))
print("切割随机切割结果1:\n",sess.run(tf.random_crop(value,size)))
print("切割随机切割结果1:\n",sess.run(tf.random_crop(value,size)))
print("可以看出,由于是随机切割,每次切割结果形状相同,内容不同")