在 Conda 虚拟环境中安装 YOLOv5 的步骤如下:
1. 添加正确的 Conda 渠道并激活环境
确保你已经添加了 NVIDIA 和 Conda Forge 渠道。运行以下命令:
conda config --add channels conda-forge
conda config --add channels nvidia
conda config --set channel_priority flexible
conda activate python312_ubuntu
2. 安装必要的依赖
YOLOv5 需要一些基础库,建议先安装以下依赖:
conda install -c pytorch pytorch torchvision torchaudio pytorch-cuda=11.8
或者 conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
如果使用 CPU,可以改为:
conda install pytorch torchvision torchaudio cpuonly -c pytorch
同时,安装其他依赖:
conda install -c conda-forge matplotlib
conda install seaborn pandas tqdm
3. 克隆 YOLOv5 项目
使用 git
克隆 YOLOv5 的代码库:
git clone https://github.com/ultralytics/yolov5.git
cd yolov5
4. 安装 YOLOv5 的 Python 依赖
运行以下命令安装所需的依赖:
pip install -r requirements.txt
5. 测试安装是否成功
运行 YOLOv5 的测试脚本,检查是否安装成功:
python detect.py --source data/images --weights yolov5s.pt --conf 0.25
成功后,YOLOv5 会在终端输出检测结果,并在 runs/detect
文件夹中保存推理结果。
6. 配置到 PyCharm
如果你计划在 PyCharm 中使用:
- 按照之前的步骤配置 Conda 虚拟环境。
- 确保
yolov5
项目目录已经在 PyCharm 的项目文件夹中。 - 测试
detect.py
,确保运行正常。
至此,YOLOv5 应该已经成功安装并可以使用了!