环境配置:
(1):miniconda下载
(2):pypi国内源安装
(3):pytorch
(4):yolov5安装
(1):miniconda下载地址
Index of /anaconda/miniconda/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror
选择和你设备系统一样的安装包下载(安装时最好安装在c盘,目录里不要有中文,同时在安装时勾选PATH)
在安装完之后在设备搜索里面可以发现安conda prompt,然后点击进入。
进入后输入conda create -n yolov5 python=3.9然后回车(注意这里的python版本版本过高可能安装不上),然后跳出提示后输入y并回车
当出现下面的界面时说明环境配置成功
(2):pypi国内源安装
输入conda activate yolov5激活环境然后进入清华的镜像网站https://mirrors.tuna.tsinghua.edu.cn/help/pypi/
在刚刚配置好的虚拟环境里面输入pip config set global.index-url https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple(注意一定是在yolov5的环境下而不是base)
(3)pytorch安装
电脑有GPU的
安装上面这个图选择即可(不同的是你的系统版本,我的是Windows系统,同时推荐用pip的命令进行安装比conda的安装要简洁一些,注意cuda的版本不能高于你的GPU所支持的最高版本,这个可以在显卡的控制面板里面查看,最后选择好了之后复制下面RUN this command里面的命令并在虚拟环境里面运行,后面等待安装结束即可)
电脑无GPU的(CPU版本)
同上面大差不差,把cuda换成CPU即可
(4):yolov5安装
https://github.com/ultralytics/yolov5
下载master版本的zip文件,同时进入上图的release在Assets里面下载source code.zip最后解压即可
将解压文件在pycharm里面打开master文件找到requirements.txt文件将里面换成这样即可(如果用GPU训练请将这两行注释掉torch>=1.8.0 torchvision>=0.9.0)
Usage: pip install -r requirements.txt # Base ------------------------------------------------------------------------ gitpython>=3.1.30 matplotlib>=3.3 numpy>=1.23.5 opencv-python>=4.1.1 pillow>=10.3.0 psutil # system resources PyYAML>=5.3.1 requests>=2.32.0 scipy>=1.4.1 thop>=0.1.1 # FLOPs computation torch>=1.8.0 # see https://pytorch.org/get-started/locally (recommended) torchvision>=0.9.0 tqdm>=4.64.0 ultralytics>=8.2.34 # https://ultralytics.com # protobuf<=3.20.1 # https://github.com/ultralytics/yolov5/issues/8012 # Logging --------------------------------------------------------------------- # tensorboard>=2.4.1 # clearml>=1.2.0 # comet # Plotting -------------------------------------------------------------------- pandas>=1.1.4 seaborn>=0.11.0 # Export ---------------------------------------------------------------------- # coremltools>=6.0 # CoreML export # onnx>=1.10.0 # ONNX export # onnx-simplifier>=0.4.1 # ONNX simplifier # nvidia-pyindex # TensorRT export # nvidia-tensorrt # TensorRT export # scikit-learn<=1.1.2 # CoreML quantization # tensorflow>=2.4.0,<=2.13.1 # TF exports (-cpu, -aarch64, -macos) # tensorflowjs>=3.9.0 # TF.js export # openvino-dev>=2023.0 # OpenVINO export # Deploy ---------------------------------------------------------------------- setuptools>=70.0.0 # Snyk vulnerability fix # tritonclient[all]~=2.24.0 # Extras ---------------------------------------------------------------------- # ipython # interactive notebook # mss # screenshots # albumentations>=1.0.3 # pycocotools>=2.0.6 # COCO mAP
然后在pycharm的终端里面输入pip install -r requirements.txt等待安装完所有相应的安装包即可
最后在anconda prompt里面激活yolov5环境然后进入yolov5-7.0(就是source code.zip这个文件解压后的文件)然后输入python detect.py,结果如下就完成了环境配置