保姆式教学yolov5环境配置

环境配置:

     (1):miniconda下载

     (2):pypi国内源安装

     (3):pytorch

     (4):yolov5安装

(1):miniconda下载地址

Index of /anaconda/miniconda/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror

          选择和你设备系统一样的安装包下载(安装时最好安装在c盘,目录里不要有中文,同时在安装时勾选PATH)

在安装完之后在设备搜索里面可以发现安conda prompt,然后点击进入。

进入后输入conda create -n yolov5 python=3.9然后回车(注意这里的python版本版本过高可能安装不上),然后跳出提示后输入y并回车

当出现下面的界面时说明环境配置成功

(2):pypi国内源安装

            输入conda activate yolov5激活环境然后进入清华的镜像网站https://mirrors.tuna.tsinghua.edu.cn/help/pypi/

在刚刚配置好的虚拟环境里面输入pip config set global.index-url https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple(注意一定是在yolov5的环境下而不是base)

 (3)pytorch安装

                     电脑有GPU的

                          

安装上面这个图选择即可(不同的是你的系统版本,我的是Windows系统,同时推荐用pip的命令进行安装比conda的安装要简洁一些,注意cuda的版本不能高于你的GPU所支持的最高版本,这个可以在显卡的控制面板里面查看,最后选择好了之后复制下面RUN this command里面的命令并在虚拟环境里面运行,后面等待安装结束即可)

                    电脑无GPU的(CPU版本)

同上面大差不差,把cuda换成CPU即可

                    

 (4):yolov5安装

https://github.com/ultralytics/yolov5

下载master版本的zip文件,同时进入上图的release在Assets里面下载source code.zip最后解压即可

将解压文件在pycharm里面打开master文件找到requirements.txt文件将里面换成这样即可(如果用GPU训练请将这两行注释掉torch>=1.8.0   torchvision>=0.9.0)

 Usage: pip install -r requirements.txt

# Base ------------------------------------------------------------------------
gitpython>=3.1.30
matplotlib>=3.3
numpy>=1.23.5
opencv-python>=4.1.1
pillow>=10.3.0
psutil  # system resources
PyYAML>=5.3.1
requests>=2.32.0
scipy>=1.4.1
thop>=0.1.1  # FLOPs computation
torch>=1.8.0  # see https://pytorch.org/get-started/locally (recommended)
torchvision>=0.9.0
tqdm>=4.64.0
ultralytics>=8.2.34  # https://ultralytics.com
# protobuf<=3.20.1  # https://github.com/ultralytics/yolov5/issues/8012

# Logging ---------------------------------------------------------------------
# tensorboard>=2.4.1
# clearml>=1.2.0
# comet

# Plotting --------------------------------------------------------------------
pandas>=1.1.4
seaborn>=0.11.0

# Export ----------------------------------------------------------------------
# coremltools>=6.0  # CoreML export
# onnx>=1.10.0  # ONNX export
# onnx-simplifier>=0.4.1  # ONNX simplifier
# nvidia-pyindex  # TensorRT export
# nvidia-tensorrt  # TensorRT export
# scikit-learn<=1.1.2  # CoreML quantization
# tensorflow>=2.4.0,<=2.13.1  # TF exports (-cpu, -aarch64, -macos)
# tensorflowjs>=3.9.0  # TF.js export
# openvino-dev>=2023.0  # OpenVINO export

# Deploy ----------------------------------------------------------------------
setuptools>=70.0.0 # Snyk vulnerability fix
# tritonclient[all]~=2.24.0

# Extras ----------------------------------------------------------------------
# ipython  # interactive notebook
# mss  # screenshots
# albumentations>=1.0.3
# pycocotools>=2.0.6  # COCO mAP

然后在pycharm的终端里面输入pip install -r requirements.txt等待安装完所有相应的安装包即可

最后在anconda prompt里面激活yolov5环境然后进入yolov5-7.0(就是source code.zip这个文件解压后的文件)然后输入python detect.py,结果如下就完成了环境配置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值